Strategies on enhancing piezocatalysis performance of ZnO-based catalysts for aquatic pollutants degradation: A review

Donghai Huang, Tengfei Wu, Daoyue Xie, Huinan Che, Yanhui Ao

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250104.

PDF(3681 KB)
PDF(3681 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250104. DOI: 10.63823/20250104

作者信息 +

Strategies on enhancing piezocatalysis performance of ZnO-based catalysts for aquatic pollutants degradation: A review

Author information +
文章历史 +

Abstract

Piezocatalysis that brings the conversion from mechanical energy to chemical energy has caught more and more attention of researchers in the field of wastewater treatment, due to its advantages of environmental friendliness and sustainability. In particular, Zinc oxide (ZnO) is regarded as an appropriate candidate material for the piezocatalytic degradation of aquatic pollutants because of the merits such as low-cost, non-toxicity and remarkable electron mobility. Besides, wurtzite ZnO possesses unique piezoelectricity owing to its noncentrosymmetric structure, which is constituted by alternating planes of Zn2+ and O2- ions along the c-axis, each Zn2+ being tetrahedral with four surrounding O2-, and vice versa. Nevertheless, the piezocatalytic performance of pure ZnO is unsatisfactory which greatly hinders its practical application. So numerous strategies are used to enhance its piezocatalytic activity. This review roundly sums up the strategies for the enhancement of ZnO-based piezocatalysis performance. Furthermore, current challenges and future perspectives of ZnO-based piezocatalysis are proposed, which would be conducive to the design and development of more serviceable ZnO-based piezocatalysts in the future.

Key words

ZnO / Piezocatalysis / Enhancing strategy / Pollutants degradation

引用本文

导出引用
Donghai Huang, Tengfei Wu, Daoyue Xie, . [J]. Composite Functional Materials. 2025, 1(1): 20250104 https://doi.org/10.63823/20250104
Donghai Huang, Tengfei Wu, Daoyue Xie, et al. Strategies on enhancing piezocatalysis performance of ZnO-based catalysts for aquatic pollutants degradation: A review[J]. Composite Functional Materials. 2025, 1(1): 20250104 https://doi.org/10.63823/20250104

参考文献

[1]
A. Deletic, H. Wang. Water pollution control for sustainable development. Engineering 2019, 5, 839-840.
[2]
A. Sharma, Z. Syed, U. Brighu, A.B. Gupta, C. Ram. Adsorption of textile wastewater on alkali-activated sand. Journal of Cleaner Production 2019, 220, 23-32.
[3]
D. Shan, S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, G. Yu, J. Winglee, M.R. Wiesner. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials 2016, 305, 156-163.
[4]
P.Y.S. Nakasu, M.A. Martinez, S. Melanie, T.A. Shmool, J.P. Hallett. Chitosan-based biocomposite hydrogels with squid pen protein for anionic dyes adsorption. ACS Materials Letters 2025, 7, 1012-1018.
[5]
Y. Long, J. Zhang, H. Bian, T. Xu, S. Wang, H. Dai, Y. Gao. In-situ synthesis of magnetic nanoparticles/wood-structural holocellulose hybrid for metal ions adsorption. Carbohydrate Polymers 2025, 357, 123436.
[6]
B. Wei, Z. Xue, Y. Yang, X. Zhong, R. Ren, R. Wang, K. Zhang. Preparation of tungsten slag-bentonite particle adsorbent and its adsorption performance for lead ion from wastewater. Journal of Central South University 2023, 30, 1841-1855.
[7]
I. Zerva, N. Remmas, P. Melidis, S. Ntougias. Biotreatment efficiency, hydrolytic potential and bacterial community dynamics in an immobilized cell bioreactor treating caper processing wastewater under highly saline conditions. Bioresource Technology 2021, 325, 124694.
[8]
J. Hu, J. Yan, L. Wu, Y. Bao, D. Yu, J. Li. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. Bioresource Technology 2021, 341, 125818.
[9]
Z.B. Bouabidi, M.H. El-Naas, Z. Zhang. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters 2019, 17, 241-257.
[10]
Y. Pan, Z. Ma, J. Shen, J. Liang, Y. Yuan, X. Lian, Y. Sun. Biotreatment of swine wastewater by mixotrophic Galdieria sulphuraria. Journal of Environmental Chemical Engineering 2024, 12, 111858.
[11]
J. Wang, D. Zhi, H. Zhou, X. He, D. Zhang. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Research 2018, 137, 324-334.
[12]
Q. Yuan, S. Qu, R. Li, Z.Y. Huo, Y. Gao, Y. Luo. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. Science of The Total Environment 2023, 856, 159092.
[13]
C. Yang, H. Pang, X. Li, X. Zheng, T. Wei, X. Ma, Q. Wang, C. Wang, D. Wang, B. Xu. Scalable electrocatalytic urea wastewater treatment coupled with hydrogen production by regulating adsorption behavior of urea molecule. Nano-Micro Letters 2025, 17, 159.
[14]
L. Zhang, Y. An, Y. Gao, H. Li, W. Wang, R. Sun, C. Zhang. High-efficiency Ti/TiO2-NTA/PbO2-Nd anode electrochemical oxidation of coking reverse osmosis concentrated (ROC). Journal of Hazardous Materials 2025, 489, 137630.
[15]
Y. Li, W. Yu, H. Lv, L. Jia, H. Shi, Z. Bian, H. Wang. NiAl-LDH/MXenes intercalated anode for enhanced electrochemical oxidation to synergistically degrade norfloxacin and antibiotic resistance genes in wastewater. Separation and Purification Technology 2025, 364, 132392.
[16]
G. Zhu, H. Yang, X. Fan, X. Quan, Y. Liu. Promoting SO4·- and ·OH generation from sulfate solution toward efficient electrochemical oxidation of organic contaminants at a B/N-Doped diamond flow-through electrode. Environmental Science & Technology 2025, 59, 2317-2326.
[17]
A. Pérez-López, C.M. Domínguez, A. Santos, S. Cotillas. Removal of polystyrene nanoplastics from urban treated wastewater by electrochemical oxidation. Separation and Purification Technology 2025, 363, 132139.
[18]
P. Wang, L. Wang, L. Rao, J. Shao, Q. Yuan, S. Shan. Simple and low-cost synthesis of g-C3N4 for efficient sunlight photocatalytic degradation of antibiotics in biogas slurry. Journal of Environmental Management 2025, 377, 124692.
[19]
S. Li, X. Wang, B. Xue, D. Feng, Y. Liu, W. Jiang. Flower-like Ag/Ag2O/Bi12O17Cl2 heterojunction for photocatalytic removal of antibiotics: Synergetic effect of plasmonic effect and p-n heterojunction. Journal of Materials Science & Technology 2025, S1005030225001914.
[20]
W. Song, T. Yu, Y. Zhang, L. Li. A visible light-driven floatable cyclized polyacrylonitrile-based aerogel (CPAN@ZnO-Ag) photocatalyst for sustainable wastewater purification. Separation and Purification Technology 2025, 362, 131801.
[21]
H. Yu, D. Liu, H. Wang, H. Yu, Q. Yan, J. Ji, J. Zhang, M. Xing. Singlet oxygen synergistic surface-adsorbed hydroxyl radicals for phenol degradation in CoP catalytic photo-Fenton. Chinese Journal of Catalysis 2022, 43, 2678-2689.
[22]
Z. Zheng, S. Tian, Y. Feng, S. Zhao, X. Li, S. Wang, Z. He. Recent advances of photocatalytic coupling technologies for wastewater treatment. Chinese Journal of Catalysis 2023, 54, 88-136.
[23]
S.Y. Yu, Z.H. Xie, X. Wu, Y.Z. Zheng, Y. Shi, Z.K. Xiong, P. Zhou, Y. Liu, C.S. He, Z.C. Pan, K.J. Wang, B. Lai. Review of advanced oxidation processes for treating hospital sewage to achieve decontamination and disinfection. Chinese Chemical Letters 2024, 35, 108714.
[24]
Y. Wang, Y. Pan, H. Zhu, Y. Xiang, R. Han, R. Huang, C. Du, C. Pan. Enhanced catalytic activity of Bi2WO6 for organic pollutants degradation under the synergism between advanced oxidative processes and visible light irradiation. Acta Physico-Chimica Sinica 2024, 40, 2304050.
[25]
C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li. Improved photo-carrier transfer by an internal electric field in BiOBr/Nrich C3N5 3D/2D S-scheme heterojunction for efficiently photocatalytic micropollutant removal. Acta Physico-Chimica Sinica 2024, 40, 2407014.
[26]
Y. Ding, C.H. Wang, J.S. Zhong, Q.N. Mao, R.T. Zheng, Y.H. Ng, M.H. Sun, S. Maitra, L.H. Chen, B.L. Su. Three-dimensionally ordered macroporous materials for pollutants abatement, environmental sensing and bacterial inactivation. Science China Chemistry 2023, 66, 1886-1904.
[27]
M. Ran, H. Xu, Y. Bao, Y. Zhang, J. Zhang, M. Xing. Selective production of CO from organic pollutants by coupling piezocatalysis and advanced oxidation processes. Angewandte Chemie International Edition 2023, 62, e202303728.
[28]
T. Li, W. Hu, C. Tang, Z. Zhou, Z. Wang, L. Shu. Enhanced piezo-catalysis in ZnO rods with built-in nanopores. Journal of Advanced Ceramics 2023, 12, 2271-2283.
[29]
X. Lu, R. Zhang, Y. Liu, Z. Zhou, Y. Xia, J. Wang, Y. Guo, X. Fan. Oxygen vacancies and lattice distortion synergistically enhanced piezocatalysis of CaZn2(BO3)2 for nonantibiotic pharmaceutical degradation. ACS Applied Materials & Interfaces 2024, 16, 63692-63702.
[30]
Z. Dong, P. Guan, L. Zhou, Y. Jiang, F. Chen, J. Wang, H. Jia, Y. Huang, T. Cao, L. Meng, Y. Zhou, M. Li, T. Wan, L. Hu, Z. Xu, Z. Han, D. Chu. Enhanced piezocatalytic performance of li‐doped BaTiO3 through a facile Sonication‐Assisted precipitation approach. ChemSusChem 2024, 17, e202400796.
[31]
C. Porwal, S. Verma, V.S. Chauhan, R. Vaish. Bismuth zinc borate- Polyacrylonitrile nanofibers for photo-piezocatalysis. Journal of Industrial and Engineering Chemistry 2023, 124, 358-367.
[32]
W. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y. Wang, Y. Yang. Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Applied Materials & Interfaces 2019, 11, 27862-27869.
[33]
S. Zhang, H. Yu, X. Zhu, X. Sang, Y. Li, J. Fu, Q. Li, Y. Zhang, W. Ye. Highly efficient piezocatalytic activity of poly(tetrafluoroethylene) for large-scale organic wastewater purification. ACS Applied Polymer Materials 2023, 5, 3585-3594.
[34]
J. Shi, S. Yang, Z. Zheng, J. Li, L. Wang, W. Zeng, L. Yang, Y. Xiong, Z. Jin, X. Tao. Textile-based piezocatalytic platform for organics degradation under low-frequency water flow. Journal of Materials Chemistry A 2023, 11, 7596-7604.
[35]
K. Feng, Y. Zhang, H. Gong, Y. He, S. Shen, Y. Zhao, X. Zhou, D. Zhang. Strategies for addressing inability to retrieve piezocatalysts and pyrocatalysts. Journal of Central South University 2024, 31, 4654-4678.
[36]
N. Meng, W. Liu, R. Jiang, Y. Zhang, S. Dunn, J. Wu, H. Yan. Fundamentals, advances and perspectives of piezocatalysis: A marriage of solid-state physics and catalytic chemistry. Progress in Materials Science 2023, 138, 101161.
[37]
K.M. Ok, E.O. Chi, P.S. Halasyamani. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chemical Society Reviews 2006, 35, 710.
[38]
I.C. Amaechi, A. Hadj Youssef, A. Dörfler, Y. González, R. Katoch, A. Ruediger. Catalytic applications of non-centrosymmetric oxide nanomaterials. Angewandte Chemie International Edition 2022, 61, e202207975.
[39]
W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu, G. Hu, Y. Peng, C. Pan, Z.L. Wang. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Advanced Materials 2020, 32, 1905795.
[40]
K. Wang, C. Han, J. Li, J. Qiu, J. Sunarso, S. Liu. The mechanism of piezocatalysis:Energy band theory or screening charge effect? Angewandte Chemie International Edition 2022, 61, e202110429.
[41]
F. Bossl, V.C. Menzel, K. Jeronimo, A. Arora, Y. Zhang, T.P. Comyn, P. Cowin, C. Kirk, N. Robertson, I. Tudela. Importance of energy band theory and screening charge effect in piezo-electrocatalytical processes. Electrochimica Acta 2023, 462, 142730.
[42]
L.L. Zhou, T. Yang, K. Wang, L.P. Zhu, E.H. Wang, K.C. Chou, H.L. Wang, X.M. Hou. Efficient piezo-catalytic dye degradation using piezoelectric 6H-SiC under harsh conditions. Rare Metals 2024, 43, 3173-3184.
[43]
J.M. Wu, W.E. Chang, Y.T. Chang, C.K. Chang. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Advanced Materials 2016, 28, 3718-3725.
[44]
M. Zhang, W. Guo, Y. Chen, D. He, A.B. Isaev, M. Zhu. Dissolved oxygen in aeration-driven piezo-catalytic for antibiotics pollutants removal in water. Chinese Chemical Letters 2023, 34, 108229.
[45]
M. Lv, S. Wang, H. Shi. Carbon quantum dots/BiVO4 S-scheme piezo-photocatalysts improved carrier separation for efficient antibiotic removal. Journal of Materials Science & Technology 2024, 201, 21-31.
[46]
W. Ma, M. Lv, F. Cao, Z. Fang, Y. Feng, G. Zhang, Y. Yang, H. Liu. Synthesis and characterization of ZnO-GO composites with their piezoelectric catalytic and antibacterial properties. Journal of Environmental Chemical Engineering 2022, 10, 107840.
[47]
L. Li, R. Guo, J. Gao, J. Liu, Z. Zhao, X. Sheng, J. Fan, F. Cui. Insight into mechanochemical destruction of PFOA by BaTiO3: An electron-dominated reduction process. Journal of Hazardous Materials 2023, 450, 131028.
[48]
S. Xiong, H. Zeng, R. Tang, L. Li, Z. Zhou, W. Li, D. Gong, Y. Deng. Piezoelectricity ameliorates high-valent iron oxo species production in peroxymonosulfate activation for refractory atrazine remediation. Journal of Hazardous Materials 2023, 460, 132335.
[49]
C. Li, W. Liu, X. Chen, L. Li, S. Lan, M. Zhu. Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters 2024, 35, 109652.
[50]
S. Tu, Y. Guo, Y. Zhang, C. Hu, T. Zhang, T. Ma, H. Huang. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Advanced Functional Materials 2020, 30, 2005158.
[51]
Y. Zhu, H. Chen, L. Wang, L. Ye, H. Zhou, Q. Peng, H. Zhu, Y. Huang. Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters 2024, 35, 108884.
[52]
K. Wang, Y. He. Recent advances in metal titanate-based piezocatalysts: Enhancing catalytic performance through improved piezoelectric properties and regulated carrier transport. Chinese Journal of Catalysis 2024, 61, 111-134.
[53]
K.S. Hong, H. Xu, H. Konishi, X. Li. Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. The Journal of Physical Chemistry C 2012, 116, 13045-13051.
[54]
J. Yang, M. Zhang, M. Chen, Y. Zhou, M. Zhu. Oxygen vacancies in piezoelectric ZnO twin-mesocrystal to improve peroxymonosulfate utilization efficiency via piezo-activation for antibiotic ornidazole removal. Advanced Materials 2023, 35, 2209885.
[55]
H.Y. Lin, K.T. Le, P.H. Chen, J.M. Wu. Systematic investigation of the piezocatalysis-adsorption duality of polymorphic MoS2 nanoflowers. Applied Catalysis B: Environmental 2022, 317, 121717.
[56]
L. Wan, W. Tian, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu. Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning. Nano Energy 2022, 94, 106930.
[57]
R. Tang, D. Gong, Y. Zhou, Y. Deng, C. Feng, S. Xiong, Y. Huang, G. Peng, L. Li. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Applied Catalysis B: Environmental 2022, 303, 120929.
[58]
Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao. ZnO nanostructures for dye-sensitized solar cells. Advanced Materials 2009, 21, 4087-4108.
[59]
M.K. Gupta, J.H. Lee, K.Y. Lee. S. W. Kim. Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. ACS Nano 2013, 7, 8932-8939.
[60]
H. Zhou, W. Ye, J. Jiang, Z. Wang. Recent advances on surface modification of non-oxide photocatalysts towards efficient CO2 conversion. Carbon Letters 2024, 34, 1569-1591.
[61]
F. Deng, J. Jiang, I. Sirés. State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Letters 2023, 33, 17-34.
[62]
N. Li, Y. Yang, Z. Shi, Z. Lan, A. Arramel, P. Zhang, W.J. Ong, J. Jiang, J. Lu. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. iScience 2022, 25, 103753.
[63]
F. Li, G. Zhu, J. Jiang, L. Yang, F. Deng, Arramel, X. Li. A review of updated S-scheme heterojunction photocatalysts. Journal of Materials Science & Technology 2024, 177, 142-180.
[64]
Z.L. Wang. Self-assembled nanoarchitectures of polar nanobelts/nanowires. Journal of Materials Chemistry 2005, 15, 1021-1024.
[65]
T. Cossuet, E. Appert, J.L. Thomassin, V. Consonni. Polarity-dependent growth rates of selective area grown ZnO nanorods by chemical bath deposition. Langmuir 2017, 33, 6269-6279.
[66]
D. Yadav, N. Tyagi, H. Yadav, A. James, N. Sareen, M. Kapoor, K. Kumar, Y. Kataria, K. Singhal. Effect of various morphologies and dopants on piezoelectric and detection properties of ZnO at the nanoscale: a review. Journal of Materials Science 2023, 58, 10576-10599.
[67]
G. Mantini, Y. Gao, A. D’Amico, C. Falconi, Z.L. Wang. Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Research 2009, 2, 624-629.
[68]
J. Liu, W. Qi, M. Xu, T. Thomas, S. Liu, M. Yang. Piezocatalytic techniques in environmental remediation. Angewandte Chemie International Edition 2023, 62, e202213927.
[69]
Y. Bai, J. Zhao, Z. Lv, K. Lu. Enhanced piezocatalytic performance of ZnO nanosheet microspheres by enriching the surface oxygen vacancies. Journal of Materials Science 2020, 55, 14112-14124.
[70]
J. Jiang, N. Li, J. Zou, X. Zhou, G. Eda, Q. Zhang, H. Zhang, L.J. Li, T. Zhai, A.T.S. Wee. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews 2019, 48, 4639-4654.
[71]
J. Jiang, F. Li, J. Zou, S. Liu, J. Wang, Y. Zou, K. Xiang, H. Zhang, G. Zhu, Y. Zhang, X. Fu, J.P. Hsu. Three-dimensional MXenes heterostructures and their applications. Science China Materials 2022, 65, 2895-2910.
[72]
F. Li, J. Jiang, J. Wang, J. Zou, W. Sun, H. Wang, K. Xiang, P. Wu, J.P. Hsu. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Research 2023, 16, 127-145.
[73]
N. Song, J. Jiang, S. Hong, Y. Wang, C. Li, H. Dong. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion. Chinese Journal of Catalysis 2024, 59, 38-81.
[74]
J. Jiang, F. Li, L. Ding, C. Zhang, Arramel, X. Li. MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications. Nano Research 2024, 17, 3429-3454.
[75]
Z.L. Wang, W. Wu, C. Falconi. Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bulletin 2018, 43, 922-927.
[76]
Y. Zhang, X. Huang, J. Yeom. A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nano-Micro Letters 2019, 11, 11.
[77]
P. Wang, W. Cai, F. Yu, P. Zhou, M. Lin, C. Lin, T. Lin, M. Gao, C. Zhao, X. Li, X. Wu. Bi0. 5Na0. 5TiO3/ZnO Z-scheme heterojunction for piezo-photocatalytic water remediation: Mechanical energy harvesting and energy band configuration. Chemosphere 2023, 338, 139548.
[78]
D. Xiang, Z. Liu, M. Wu, H. Liu, X. Zhang, Z. Wang, Z.L. Wang, L. Li. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au-ZnO nanorod array. Small 2020, 16, 1907603.
[79]
J. Yuan, X. Huang, L. Zhang, F. Gao, R. Lei, C. Jiang, W. Feng, P. Liu. Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Applied Catalysis B: Environmental 2020, 278, 119291.
[80]
S. Li, M. Zhang, Y. Gao, B. Bao, S. Wang. ZnO-Zn/CNT hybrid film as light-free nanocatalyst for degradation reaction. Nano Energy 2013, 2, 1329-1336.
[81]
X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 2015, 13, 414-422.
[82]
X. Chen, L. Liu, Y. Feng, L. Wang, Z. Bian, H. Li, Z.L. Wang. Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Materials Today 2017, 20, 501-506.
[83]
H. Wang, X. Liu, S. Wang, L. Li. Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity. Applied Catalysis B: Environmental 2018, 222, 209-218.
[84]
C. Zhang, W. Fei, H. Wang, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. Journal of Hazardous Materials 2020, 399, 123109.
[85]
Y. Fu, Z. Ren, J. Wu, Y. Li, W. Liu, P. Li, L. Xing, J. Ma, H. Wang, X. Xue. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Applied Catalysis B: Environmental 2021, 285, 119785.
[86]
W. Zheng, Y. Tang, Z. Liu, G. Xing, K. Zhao. Enhanced charge carrier separation by bi-piezoelectric effects based on pine needle-like BaTiO3/ZnO continuous nanofibers. Journal of Materials Chemistry A 2022, 10, 13544-13555.
[87]
H. Lv, Y. Liu, P. Zhao, Y. Bai, W. Cui, S. Shen, Y. Liu, Z. Wang, D.G. Yu. Insight into the superior piezophotocatalytic performance of BaTiO3//ZnO Janus nanofibrous heterostructures in the treatment of multi-pollutants from water. Applied Catalysis B: Environmental 2023, 330, 122623.
[88]
Z. Wang, M. Xiang, B. Huo, J. Wang, L. Yang, W. Ma, J. Qi, Y. Wang, Z. Zhu, F. Meng. A novel ZnO/CQDs/PVDF piezoelectric system for efficiently degradation of antibiotics by using water flow energy in pipeline: performance and mechanism. Nano Energy 2023, 107, 108162.
[89]
Y. Wen, J. Chen, X. Gao, W. Liu, H. Che, B. Liu, Y. Ao. Two birds with one stone: Cobalt-doping induces to enhanced piezoelectric property and persulfate activation ability of ZnO nanorods for efficient water purification. Nano Energy 2023, 107, 108173.
[90]
Y. Wen, W. Liu, P. Wang, H. Che, C. Tang, B. Liu. Y. Ao. Interface interaction enhanced piezo-catalytic hydrogen peroxide generation via one-electron water oxidation. Advanced Functional Materials 2023, 33, 2308084.
[91]
M. Zhang, H. Tao, C. Zhai, J. Yang, Y. Zhou, D. Xia, G. Comodi, M. Zhu. Twin-brush ZnO mesocrystal for the piezo-activation of peroxymonosulfate to remove ibuprofen in water: Performance and mechanism. Applied Catalysis B: Environmental 2023, 326, 122399.
[92]
X. Ning, A. Hao, R. Chen, M.F. Khan, D. Jia. Constructing of GQDs/ZnO S-scheme heterojunction as efficient piezocatalyst for environmental remediation and understanding the charge transfer mechanism. Carbon 2024, 218, 118772.
[93]
N. Bhadwal, R. Ben Mrad, K. Behdinan. Review of zinc oxide piezoelectric nanogenerators: Piezoelectric properties, composite structures and power output. Sensors 2023, 23, 3859.
[94]
X.Q. Zhou, Z. Hayat, D.D. Zhang, M.Y. Li, S. Hu, Q. Wu, Y.F. Cao, Y. Yuan. Zinc oxide nanoparticles: Synthesis, characterization, modification, and applications in food and agriculture. Processes 2023, 11, 1193.
[95]
R.S. Yadav, I. Kuřitka. Recent advances on outstanding microwave absorption and electromagnetic interference shielding nanocomposites of ZnO semiconductor. Advances in Colloid and Interface Science 2024, 326, 103137.
[96]
Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie. A review on ZnO-based S-scheme heterojunction photocatalysts. Chinese Journal of Catalysis 2023, 52, 32-49.
[97]
J. van Embden, S. Gross, K.R. Kittilstved, E.D. Gaspera. Colloidal approaches to zinc oxide nanocrystals. Chemical Reviews 2022, 123, 271-326.
[98]
M.L. Popa, M.D. Preda, I.A. Neacsu, A.M. Grumezescu, O. Ginghina.Traditional vs. microfluidic synthesis of ZnO nanoparticles. International Journal of Molecular Sciences 2023, 24, 1875.
[99]
J. Wojnarowicz, T. Chudoba, W. Lojkowski. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials 2020, 10, 1086.
[100]
A. Moezzi, A.M. McDonagh, M.B. Cortie. Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal 2012, 185-186, 1-22.
[101]
A. Kolodziejczak-Radzimska, T. Jesionowski. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833-2881.
[102]
J.S. Chang, C.P. Saint, C.W.K. Chow, D.W. Bahnemann, M.N. Chong. Recent innovations in engineering Zinc Oxide (ZnO) nanostructures for water and wastewater treatment: Pushing the boundaries of multifunctional photocatalytic and advanced biotechnological applications. International Materials Reviews 2024, 69, 337-379.
[103]
E. Mohammadi, M. Aliofkhazraei, M. Hasanpoor, M. Chipara. Hierarchical and complex ZnO nanostructures by microwave-assisted synthesis: Morphologies, growth mechanism and classification. Critical Reviews in Solid State and Materials Sciences 2018, 43, 475-541.
[104]
K.M. Mohamed, J.J. Benitto, J.J. Vijaya, M. Bououdina. Recent advances in ZnO-based nanostructures for the photocatalytic degradation of hazardous, non-biodegradable medicines. Crystals 2023, 13, 329.
[105]
J. Wang, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, X. Li. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry 2023, 25, 32-58.
[106]
Y. Zhang, C. Wang, L. Zhao, F. Liu, X. Sun, X. Hu, G. Lu. Microwave-assisted synthesis of La/ZnO hollow spheres for trace-level H2S detection. Sensors and Actuators B: Chemical 2021, 334, 129514.
[107]
T.E.M. Silva, A.J. Moreira, E.T.D. Nobrega, R.G. Alencar, P.T. Rabello, S.F. Blaskievicz, G.N. Marques, L.H. Mascaro, E.C. Paris, S.G. Lemos, E.C. Pereira, G.P.G. Freschi. Hierarchical structure of 3D ZnO experimentally designed to achieve high performance in the sertraline photocatalysis in natural waters. Chemical Engineering Journal 2023, 475, 146235.
[108]
Y. Xiang, Z. Liu, Z. lin Cheng. Diatomite supported highly-dispersed ZnO/Zn-co-embedded ZIF-8 derived porous carbon composites for adsorption desulfurization. Journal of Hazardous Materials 2024, 471, 134399.
[109]
L.A. Chanu, W.J. Singh, K.J. Singh, K.N. Devi. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics 2019, 12, 1230-1237.
[110]
K.P. Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R. Bin Johan, F.A. Aziz, R.F. Rafique, R.T. Selvi, R.R. Bala. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Research Letters 2018, 13, 229.
[111]
M. Adeel, M. Saeed, I. Khan, M. Muneer, N. Akram. Synthesis and characterization of Co-ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 2021, 6, 1426-1435.
[112]
T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, A. Hussain. Multi metal oxide NiO-CdO-ZnO nanocomposite-synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceramics International 2020, 46, 2421-2437.
[113]
M. Sajjad, I. Ullah, M. Khan, J. Khan, M.Y. Khan, M.T. Qureshi. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results in Physics 2018, 9, 1301-1309.
[114]
R.E. Adam, G. Pozina, M. Willander, O. Nur. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics and Nanostructures - Fundamentals and Applications 2018, 32, 11-18.
[115]
O. Sacco, P. Franco, I. De Marco, V. Vaiano, E. Callone, R. Ceccato, F. Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues. Journal of Materials Science & Technology 2022, 112, 49-58.
[116]
E. Mendoza-Mendoza, A.G. Nuñez-Briones, L.A. García-Cerda, R.D. Peralta-Rodríguez, A.J. Montes-Luna. One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceramics International 2018, 44, 6176-6180.
[117]
S. Zeljković, M. Balaban, D. Gajić, S. Vračević, T. Ivas, D. Vranković, D. Jelić. Mechanochemically induced synthesis of N-ion doped ZnO: solar photocatalytic degradation of methylene blue. Green Chemistry Letters and Reviews 2022, 15, 869-880.
[118]
E. Tóthová, M. Senna, A. Yermakov, J. Kováč, E. Dutková, M. Hegedüs, M. Kaňuchová, M. Baláž, Z.L. Bujňáková, J. Briančin, P. Makreski. Zn source-dependent magnetic properties of undoped ZnO nanoparticles from mechanochemically derived hydrozincite. Journal of Alloys and Compounds 2019, 787, 1249-1259.
[119]
D. Štrbac, C.A. Aggelopoulos, G. Štrbac, M. Dimitropoulos, M. Novaković, T. Ivetić, S.N. Yannopoulos. Photocatalytic degradation of naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture. Process Safety and Environmental Protection 2018, 113, 174-183.
[120]
P. Krupiński, A. Grala, M. Wolska-Pietkiewicz, W. Danowski, I. Justyniak, J. Lewiński. From uncommon ethylzinc complexes supported by ureate ligands to water-soluble ZnO nanocrystals: A mechanochemical approach. ACS Sustainable Chemistry & Engineering 2021, 9, 1540-1549.
[121]
H. Çolak, E. Karaköse. Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications. Sensors and Actuators B: Chemical 2019, 296, 126629.
[122]
B. Leng, X. Zhang, S. Chen, J. Li, Z. Sun, Z. Ma, W. Yang, B. Zhang, K. Yang, S. Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles. Journal of Materials Science & Technology 2021, 94, 67-76.
[123]
D. Lee, M. Wolska-Pietkiewicz, S. Badoni, A. Grala, J. Lewiński, G.D. Paëpe. Disclosing interfaces of ZnO nanocrystals using dynamic nuclear polarization:Sol-gel versus organometallic approach. Angewandte Chemie International Edition 2019, 58, 17163-17168.
[124]
N. Olejnik‐Fehér, M. Jędrzejewska, M. Wolska‐Pietkiewicz, D. Lee, G.D. Paëpe, J. Lewiński. On the fate of lithium ions in sol-gel derived zinc oxide nanocrystals. Small 2024, 20, 2309984.
[125]
U. Chakraborty, G. Bhanjana, Kannu, N. Kaur, R. Sharma, G. Kaur, A. Kaushik, G.R. Chaudhary. Microwave-assisted assembly of Ag2O-ZnO composite nanocones for electrochemical detection of 4-Nitrophenol and assessment of their photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue dye. Journal of Hazardous Materials 2021, 416, 125771.
[126]
A.R. Bhapkar, S. Bhame. A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. Journal of Environmental Chemical Engineering 2024, 12, 112553.
[127]
M. Ahmad, W. Rehman, M.M. Khan, M.T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab, F. Menaa. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering 2021, 9, 104725.
[128]
A.M. Pillai, V.S. Sivasankarapillai, A. Rahdar, J. Joseph, F. Sadeghfar, R. Anuf A, K. Rajesh, G.Z. Kyzas. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure 2020, 1211, 128107.
[129]
A.G. Zewudie, E.A. Zereffa, T.A. Segne, H.C.A. Murthy, C.R. Ravikumar, D. Muniswamy, B.B. Binagdie. Biosynthesis of Ag/bentonite, ZnO/bentonite, and Ag/ZnO/bentonite nanocomposites by aqueous leaf extract of Hagenia abyssinica for antibacterial activities. Reviews on Advanced Materials Science 2023, 62,
[130]
S. Ghaffar, A. Abbas, M. Naeem-ul-Hassan, N. Assad, M. Sher, S. Ullah, H.A. Alhazmi, A. Najmi, K. Zoghebi, M. Al Bratty, A. Hanbashi, H.A. Makeen, H.M.A. Amin. Improved photocatalytic and antioxidant activity of olive fruit extract-mediated ZnO nanoparticles. Antioxidants 2023, 12, 1201.
[131]
T. Gur, I. Meydan, H. Seckin, M. Bekmezci, F. Sen. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research 2022, 204, 111897.
[132]
M.D. Jayappa, C.K. Ramaiah, M.A.P. Kumar, D. Suresh, A. Prabhu, R.P. Devasya, S. Sheikh.Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L. : characterization and their applications. Applied Nanoscience 2020, 10, 3057-3074.
[133]
A. Raja, S. Ashokkumar, R.P. Marthandam, J. Jayachandiran, C.P. Khatiwada, K. Kaviyarasu, R.G. Raman, M. Swaminathan. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology 2018, 181, 53-58.
[134]
K.J. Rao, V. Kumaravel, I. Pownraj, K. Saha, T. Korumilli, S.K. Sadasivam. Biosynthesis and photocatalytic evaluation of ZnO nanoparticles using banana flower perianth. Journal of Cleaner Production 2022, 380, 135180.
[135]
P. Somu, H.D. Khanal, L.A. Gomez, V. R, J.J. Shim, Y.R. Lee. Multifunctional biogenic Al-doped zinc oxide nanostructures synthesized using bioreductant chaetomorpha linum extricate exhibit excellent photocatalytic and bactericidal ability in industrial effluent treatment. Biomass Conversion and Biorefinery 2022,
[136]
S.M. Hassan, M. Farag, S.M. El‐Dafrawy. Photodegradation of cationic and anionic dyes by ZnO and S/ZnO biosynthesized nano-photocatalysts. Applied Organometallic Chemistry 2024, 38, e7387.
[137]
J.L. López-Miranda, F. Mares-Briones, G.A. Molina, M.A. González-Reyna, I. Velázquez-Hernández, B.L. España-Sánchez, R. Silva, R. Esparza, M. Estévez. Sargassum natans I algae: An alternative for a greener approach for the synthesis of ZnO nanostructures with biological and environmental applications. Marine Drugs 2023, 21, 297.
[138]
H. Waqif, N. Munir, M.A. Farrukh, M. Hasnain, M. Sohail, Z. Abideen. Algal macromolecular mediated synthesis of nanoparticles for their application against citrus canker for food security. International Journal of Biological Macromolecules 2024, 263, 130259.
[139]
D. Vinu, K. Govindaraju, R. Vasantharaja, S.A. Nisa, M. Kannan, K.V. Anand. Biogenic zinc oxide, copper oxide and selenium nanoparticles: preparation, characterization and their anti-bacterial activity against Vibrio parahaemolyticus. Journal of Nanostructure in Chemistry 2020, 11, 271-286.
[140]
A.A. Mohamed, M. Abu-Elghait, N.E. Ahmed, S.S. Salem. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for In vitro antibacterial, antibiofilm, and antifungal applications. Biological Trace Element Research 2020, 199, 2788-2799.
[141]
F. Ameen, T. Dawoud, S. AlNadhari. Ecofriendly and low-cost synthesis of ZnO nanoparticles from Acremonium potronii for the photocatalytic degradation of azo dyes. Environmental Research 2021, 202, 111700.
[142]
M. Jiménez-Rosado, A. Gomez-Zavaglia, A. Guerrero, A. Romero. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). Journal of Cleaner Production 2022, 350, 131541.
[143]
K. Rambabu, G. Bharath, F. Banat, P.L. Show. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. Journal of Hazardous Materials 2021, 402, 123560.
[144]
B. Clarke, K. Ghandi. The interplay of growth mechanism and properties of ZnO nanostructures for different applications. Small 2023, 19, 2302864.
[145]
A. Troia, S. Galati, V. Vighetto, V. Cauda. Piezo/sono-catalytic activity of ZnO micro/nanoparticles for ROS generation as function of ultrasound frequencies and dissolved gases. Ultrasonics Sonochemistry 2023, 97, 106470.
[146]
X. Ning, A. Hao, Y. Cao, J. Hu, J. Xie, D. Jia. Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism. Journal of Colloid and Interface Science 2020, 577, 290-299.
[147]
D. Meroni, C.L. Bianchi, D.C. Boffito, G. Cerrato, A. Bruni, M. Sartirana, E. Falletta. Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. Ultrasonics Sonochemistry 2021, 75, 105615.
[148]
J. Ma, J. Ren, Y. Jia, Z. Wu, L. Chen, N.O. Haugen, H. Huang, Y. Liu. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 2019, 62, 376-383.
[149]
Y. Wen, J. Chen, X. Gao, H. Che, P. Wang, B. Liu, Y. Ao. Piezo-enhanced photocatalytic performance of ZnO nanorod array for pollutants degradation in dynamic water: Insight into the effect of velocity and inner flow field. Nano Energy 2022, 101, 107614.
[150]
R. Yang, Z. Wu, Y. Yang, Y. Li, L. Zhang, B. Yu. Understanding the origin of synergistic catalytic activities for ZnO based sonophotocatalytic degradation of methyl orange. Journal of the Taiwan Institute of Chemical Engineers 2021, 119, 128-135.
[151]
S. Bettini, R. Pagano, D. Valli, C. Ingrosso, M. Roeffaers, J. Hofkens, G. Giancane, L. Valli. ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surfaces and Interfaces 2023, 36, 102581.
[152]
R. Pagano, S. Bettini, M. Ottolini, G. Ciccarella, L. Valli, G. Giancane. Piezo- and photo- responsive ZnO nanostructures for efficient tetracycline water remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 680, 132626.
[153]
X. Yang, J. Wang, A.M. El-Sherbeeny, A.A. AlHammadi, W.H. Park, M.R. Abukhadra. Insight into the adsorption and oxidation activity of a ZnO/piezoelectric quartz core-shell for enhanced decontamination of ibuprofen: Steric, energetic, and oxidation studies. Chemical Engineering Journal 2022, 431, 134312.
[154]
S. Zheng, X. Li, J. Zhang, J. Wang, C. Zhao, X. Hu, Y. Wu, Y. He. One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of Rhodamine B under ultrasonic vibration. Journal of Environmental Sciences 2023, 125, 1-13.
[155]
A. Sharma, U. Bhardwaj, D. Jain, H.S. Kushwaha. NaNbO3/ZnO piezocatalyst for non-destructive tooth cleaning and antibacterial activity. iScience 2022, 25, 104915.
[156]
X. Ning, D. Jia, S. Li, M.F. Khan, A. Hao. Construction of CuS/ZnO Z-scheme heterojunction as highly efficient piezocatalyst for degradation of organic pollutant and promoting N2 fixation properties. Ceramics International 2023, 49, 21658-21666.
[157]
H. Li, W. Ma, X. Zeng, S. Liu, L. Xiao, Z. Fang, Y. Feng, M. Yang, H. Zhu, Y. Yang, H. Liu. ZnO/CuO piezoelectric nanocatalysts for the degradation of organic pollutants. ACS Applied Nano Materials 2023, 6, 21113-21122.
[158]
R. Wang, X. Xie, C. Xu, Y. Lin, D. You, J. Chen, Z. Li, Z. Shi, Q. Cui, M. Wang. Bi-piezoelectric effect assisted ZnO nanorods/PVDF-HFP spongy photocatalyst for enhanced performance on degrading organic pollutant. Chemical Engineering Journal 2022, 439, 135787.
[159]
J. Wu, K. Ke, N. Qin, E. Lin, Z. Kang, D. Bao. Magnetically retrievable Fe3O4@SiO2@ZnO piezo-photocatalyst: Synthesis and multiple catalytic properties. Journal of Colloid and Interface Science 2023, 636, 167-175.
[160]
Q. Nie, Y. Xie, J. Ma, J. Wang, G. Zhang. High piezo-catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. Journal of Cleaner Production 2020, 242, 118532.
[161]
C. Wang, X. Qin, Z. Zhang, G. Mustafa, Y. Wang, A. Fan, W. Ma. ZnO@ZIF-8: The construction of core-shell structures to a new reaction pathway for efficient TC degradation. Separation and Purification Technology 2024, 330, 125447.
[162]
W. Wu, X. Yin, B. Dai, J. Kou, Y. Ni, C. Lu. Water flow drived piezo-photocatalytic flexible films: Bi-piezoelectric integration of ZnO nanorods and PVDF. Applied Surface Science 2020, 517, 146119.
[163]
H. Lv, H. Yin, T. Wang, W. Lin, C. Yuan, Q. Fei, Y. Zhang, D. Xiao, X. Wang, Y. Zhang, P. Zhang, Q. Xue. The insight into the critical role of photoexcitation in manipulating charge carrier migration in piezo-photocatalytic S-scheme heterojunction. Materials Today Physics 2023, 37, 101212.
[164]
Z. Kang, K. Ke, E. Lin, N. Qin, J. Wu, R. Huang, D. Bao. Piezoelectric polarization modulated novel Bi2WO6/g-C3N4/ZnO Z-scheme heterojunctions with g-C3N4 intermediate layer for efficient piezo-photocatalytic decomposition of harmful organic pollutants. Journal of Colloid and Interface Science 2022, 607, 1589-1602.
[165]
X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu, Y. He. Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater. Journal of Colloid and Interface Science 2022, 607, 412-422.
[166]
Z. Ren, J. Xie, X. Li, L. Guo, Q. Zhang, J. Wu, Y. Li, W. Liu, P. Li, Y. Fu, K. Zhao, J. Ma. Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the efficient production of reactive oxygen species through stirring-promoted piezo-photocatalysis. Journal of Colloid and Interface Science 2023, 632, 271-284.
[167]
D. Hong, W. Zang, X. Guo, Y. Fu, H. He, J. Sun, L. Xing, B. Liu, X. Xue. High piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye. ACS Applied Materials & Interfaces 2016, 8, 21302-21314.
[168]
L. Guo, Y. Chen, Z. Ren, X. Li, Q. Zhang, J. Wu, Y. Li, W. Liu, P. Li, Y. Fu, J. Ma. Morphology engineering of type-II heterojunction nanoarrays for improved sonophotocatalytic capability. Ultrasonics Sonochemistry 2021, 81, 105849.
[169]
Y. Li, H. Chen, L. Wang, T. Wu, Y. Wu, Y. He. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrasonics Sonochemistry 2021, 78, 105754.
[170]
P. Gotipamul, R. Maheswaran, S. Pandiaraj, S.A. Alqarni, S. Chidambaram. Piezo-photocatalytically enhanced H2 production and pollutant removal from ZnO nanorods grown on g-C3N4 layers. Materials Today Sustainability 2023, 24, 100501.
[171]
Q. Gao, L. Zhou, S. Xu, S. Dai, Q. Zhu, Y. Li. Significant improvement and mechanism of tetracycline degradation with the synergistic piezoelectric effect of ZnO/CuS Z-scheme heterojunction photocatalysts. Environmental Science: Nano 2023, 10, 581-594.
[172]
H. Sun, S.J. Park. Highly efficient reduction of aqueous Cr(VI) with novel ZnO/SnS nanocomposites through the piezoelectric effect. Journal of Environmental Sciences 2022, 118, 57-66.
[173]
X. Zhou, S. Wu, C. Li, F. Yan, H. Bai, B. Shen, H. Zeng, J. Zhai. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation. Nano Energy 2019, 66, 104127.
[174]
L. Jiang, C. Du, N. Xie, Y. Hou, J. Tang, H. Fu, J. Zhang, H. Gao, Y. Liao. Enhanced piezo-photocatalytic performance of ZnO/BNBT-6 heterojunction via piezoelectric effect for degradation of dye wastewater. Journal of Molecular Structure 2025, 1321, 139928.
[175]
H. Huang, D. Verhaeghe, B. Weng, B. Ghosh, H. Zhang, J. Hofkens, J.A. Steele, M.B.J. Roeffaers. Metal halide perovskite based heterojunction photocatalysts. Angewandte Chemie International Edition 2022, 61, e202203261.
[176]
C. Liu, M. Peng, A. Yu, J. Liu, M. Song, Y. Zhang, J. Zhai. Interface engineering on p-CuI/n-ZnO heterojunction for enhancing piezoelectric and piezo-phototronic performance. Nano Energy 2016, 26, 417-424.
[177]
T.N.N. Nguyen, K.S. Chang. Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3-n-ZnO heterojunction films. Renewable Energy 2022, 197, 89-100.
[178]
X. Zhou, Y. Liu, Y. Miao, W. He, Y. Pan, A.J. Li, J. Qin, H. Li, R. Yin, R. Qiu. Coupled radical and nonradical activation of peroxymonosulfate by the piezo-photocatalytic effect of α-SnWO4/ZnO heterojunction to boost the degradation and detoxification of carbamazepine. Separation and Purification Technology 2023, 323, 124410.
[179]
Y. Yu, B. Yao, Y. He, B. Cao, Y. Ren, Q. Sun. Piezo-enhanced photodegradation of organic pollutants on Ag3PO4/ZnO nanowires using visible light and ultrasonic. Applied Surface Science 2020, 528, 146819.
[180]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews 2014, 43, 5234-5244.
[181]
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543-1559.
[182]
Y. Gao, S. Li, B. Zhao, Q. Zhai, A. Lita, N.S. Dalal, H.W. Kroto, S.F.A. Acquah. A synergistic approach to light-free catalysis using zinc oxide embedded multi-walled carbon nanotube paper. Carbon 2014, 77, 705-709.
[183]
D.Y. Zhou, G.Y. Pan, M.L. Xu, X. He, T. Li, F.T. Liu, F.H. Jiang. K. Li. Metal-organic framework-derived porous carbon-mediated ZnO-nano-ZnO core-shell structure with excellent photocatalytic activity. CrystEngComm 2023, 25, 425-431.
[184]
Z. Wang, B. Huo, J. Wang, W. Ma, J. Qi, Z. Zhu, F. Meng, Y. Wang. In situ synthesis of flower-structured ZnO@YFC for the efficient piezocatalytic degradation of tetracycline wastewater: Degradation mechanism and toxicity evolution. Applied Surface Science 2022, 602, 154330.
[185]
Y. Zhang, S. Wang, Y. Zhao, Y. Ding, Z. Zhang, T. Jiang, Z.L. Wang, L. Li. Piezo-phototronic effect boosted catalysis in plasmonic bimetallic ZnO heterostructure with guided fermi level alignment. Materials Today Nano 2022, 18, 100177.
[186]
X. Zhao, Z. Li, J. Yu, C. Li, S. Xu, F. Li, C. Zhang, B. Man, C. Zhang. Plasmonic and bi-piezoelectric enhanced photocatalysis using PVDF/ZnO/Au nanobrush. Nanophotonics 2022, 11, 3339-3349.
[187]
Y. Ye, K. Wang, X. Huang, R. Lei, Y. Zhao, P. Liu. Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation. Catalysis Science & Technology 2019, 9, 3771-3778.
[188]
L. Zhang, D. Zhu, H. He, Q. Wang, L. Xing, X. Xue. Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect. Journal of Physics and Chemistry of Solids 2017, 102, 27-33.
[189]
X. Ning, A. Hao, Y. Cao, N. lv, D. Jia. Boosting piezocatalytic performance of Ag decorated ZnO by piezo-electrochemical synergistic coupling strategy. Applied Surface Science 2021, 566, 150730.
[190]
Y. Fu, Z. Wang, S. You, R. Zhang, X. Wang. Extraordinary photooxidation properties of ZnO nanosheets with surface oxygen vacancies of low density. Applied Surface Science 2023, 638, 158005.
[191]
Y. Guo, C. Mao, S. Wu, C. Wang, Y. Zheng, X. Liu. Ultrasound-triggered piezoelectric catalysis of zinc oxide@glucose derived carbon spheres for the treatment of MRSA infected osteomyelitis. Small 2024, 20, 2400732.
[192]
Y. Han, J. Xu, W. Xie, Z. Wang, P. Hu. Comprehensive study of oxygen vacancies on the catalytic performance of ZnO for CO/H2 activation using machine learning-accelerated first-principles simulations. ACS Catalysis 2023, 13, 5104-5113.
[193]
Y. Li, L. Li, F. Liu, B. Wang, F. Gao, C. Liu, J. Fang, F. Huang, Z. Lin, M. Wang. Robust route to H2O2 and H2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts. Nano Research 2022, 15, 7986-7993.
[194]
J. Roy, S. Roy, D. Mondal, N. Bag, J.R. Chowdhury, S. Ghosh, S. Bardhan, R. Mondal, R. Basu, S. Das. Gd-doped bismuth ferrite nanocomposite: A promising candidate for piezocatalytic degradation of organic dyes and pathogenic E. coli. Surfaces and Interfaces 2024, 44, 103579.
[195]
M. Laurenti, N. Garino, G. Canavese, S. Hernandez, V. Cauda. Piezo- and photocatalytic activity of ferroelectric ZnO:Sb thin films for the efficient degradation of rhodamine-β dye pollutant. ACS Applied Materials & Interfaces 2020, 12, 25798-25808.
[196]
R. Manoharan, A. Manjceevan, K. Velauthamurty, G. Sashikesh, K. Vignarooban. Conversion of both photon and mechanical energy into chemical energy using higher concentration of Al doped ZnO. Journal of Alloys and Compounds 2023, 948, 169712.
[197]
J. Wang, X. Dai, X. Pei, L. Qi, F. Ning, J. Chen, Y. Li, J. Chen, Y. Zhao. Ferroelectric LaxFe0. 1-x codoped ZnO nanorod triboelectric nanogenerators for electrochemical rhodamine B degradation. ACS Applied Nano Materials 2022, 5, 12756-12764.
[198]
F. Meng, Z. Wang, B. Huo, J. Wang, D. Li, W. Hao, W. Ma, J. Qi, P. Cui, Z. Zhu, Y. Wang. Efficient degradation of chlortetracycline in water by ultrasound activation of flexible ZnCoO doped PVDF membranes with high β phase. Applied Surface Science 2023, 619, 156782.
[199]
R. Bai, G. He, J. Li, L. Li, T. Zhang, X. Wang, W. Zhang, Y. Zou, J. Zhang, D. Mei, A. Corma, J. Yu. Heteroatoms-stabilized single palladium atoms on amorphous zeolites:Breaking the tradeoff between catalytic activity and selectivity for alkyne semihydrogenation. Angewandte Chemie International Edition 2024, 63, e202410017.
[200]
B. Sun, M. Xu, X. Li, B. Zhang, R. Hao, X. Fan, B. Jia. D. She. Unlocking single-atom catalysts via amorphous substrates. Nano Research 2024, 17, 3533-3546.
[201]
Y.C. Zhang, M. Zhao, J. Wu, Y. Wang, L. Zheng, F. Gu, J.J. Zou, J. Gao, X.D. Zhu. Construction of Pt single-atom and cluster/FeOOH synergistic active sites for efficient electrocatalytic hydrogen evolution reaction. ACS Catalysis 2024, 14, 7867-7876.
[202]
G. Yao, S. Yang, S. Jiang, C. Sun, S. Song. Spin polarized graphene monolayer of van der Waals heterojunction for photocatalytic H2O overall splitting. Applied Catalysis B: Environmental 2022, 315, 121569.
[203]
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang, B. Jia, D. Su, T. Ma. Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Letters 2023, 15, 132.
[204]
Y. Wang, Z. Lin, X. Zhang, P. Chen, Q. Zhang, W. Lv, G. Liu, Y. Zhu. Enhanced water decontamination via photogenerated electron delocalization of π→π* and D-π-A synergistically. Journal of Colloid and Interface Science 2024, 675, 926-934.
[205]
Z. Jiang, K. Tong, Z. Li, H. Tao, M. Zhu. Spin state regulation for peroxide activation:Fundamental insights and regulation mechanisms. Angewandte Chemie International Edition 2025, e202500791.
[206]
H. Zhang, H.C. Chen, S. Feizpoor, L. Li, X. Zhang, X. Xu, Z. Zhuang, Z. Li, W. Hu, R. Snyders, D. Wang, C. Wang. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries. Advanced Materials 2024, 36, 2400523.
[207]
Y. Chen, H. Zhang, Y. Li, W.W. Li, G.P. Sheng, Y. Wang.Coordination anions dimensionality-engineered dual-atom catalysts for enhanced Fenton-like reactions: 3D coordination induced spin-state transition. ACS Nano 2025, acsnano. 5c00567.
[208]
X. Dai, Z. Liu, Z. Zhao, J. Wang, H. Luo, L. Cheng, W. Chen. Efficient hydrogen recovery from wastewater treatment by piezo-photocatalytic heterostructure. Journal of Cleaner Production 2024, 447, 141540.
[209]
J. Niu, T. He, C. Qiu, Z. Song. Piezoelectric polarization modulates photocarrier kinetics via enhanced built-in field at heterojunctions. Chemical Engineering Journal 2025, 508, 161206.
[210]
B. Wang, Q. Zhang, J. He, F. Huang, C. Li, M. Wang. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. Journal of Energy Chemistry 2022, 65, 304-311.
[211]
X. Zhang, Y. Chen, R. Guo, Z. Zhang, Z. Sun, Y. Zhang, F. Yan. Three birds with one stone: A piezo-photocatalytic system for synergistic environmental remediation through simultaneous ionic liquids degradation, H2 production, and uranium reduction. Applied Catalysis B: Environment and Energy 2025, 372, 125314.
[212]
L. Liu, W. Yu, Y. Zhao, W. Zhu, J. Li, L. Wu, H. Wang. The effect of Cu doping on the piezoelectric properties of ZnO systems: First-principles calculations. International Journal of Modern Physics B 2024, 38, 2450324.
[213]
G. Chen, P. shuo Wang. Effect of passivation on piezoelectricity of ZnO nanowire. Chinese Journal of Chemical Physics 2020, 33, 434-442.
[214]
W. Zhao, G. Wang, S. Song, M. Wen, G. Li, T. An. Enhanced pizeopotential-mediated catalytic oxidation mechanism of formaldehyde and anti-deactivation performance onto ZnO surface. Applied Catalysis B: Environment and Energy 2024, 353, 124057.
[215]
M. Ran, B. Du, W. Liu, Z. Liang, L. Liang, Y. Zhang, L. Zeng, M. Xing.Dynamic defects boost in-situ H2O2 piezocatalysis for water cleanup. Proceedings of the National Academy of Sciences 2024, 121, e2317435121.
[216]
Y. Wen, H. Che, C. Tang, B. Liu, Y. Ao. A Schottky heterojunction with spatially separated active sites for piezo-photocatalytic dual-channel hydrogen peroxide generation. Nano Energy 2024, 128, 109837.
[217]
H. Lv, Y. Liu, J. Zhou, Y. Bai, H. Shi, B. Yue, S. Shen, D.G. Yu. Efficient piezophotocatalysis of ZnO@PVDF coaxial nanofibers modified with BiVO4 and Ag for the simultaneous generation of H2O2 and removal of pefloxacin and Cr(VI) in water. Chemical Engineering Journal 2024, 484, 149514.
[218]
H. Xie, G. Zhang, J. Xu, H. Lin, J. Xing, L. Wang. Interfacial bonding of Co3O4 and oxygen vacancies engineering on ZnO induced efficient peroxymonosulfate activation and pollutants degradation. Journal of Colloid and Interface Science 2024, 674, 813-822.
[219]
Enhanced visible-light photocatalytic performances of ZnO through loading AgI and coupling piezo-photocatalysis. Journal of Alloys and Compounds 2021, 852, 156848.
[220]
T.S. Bui, Z. Ma, J.A. Yuwono, P.V. Kumar, G.E.P. O’Connell, L. Peng, Y. Yang, M. Lim, R. Daiyan, E.C. Lovell, R. Amal. Enhanced nitrate-to-ammonia activity on Fe/ZnO nanoparticles via tuning intermediate adsorption in alkaline electrolyte. Advanced Functional Materials 2024, 34, 2408704.
[221]
Z. Wang, H. Wang, X. Wang, X. Chen, Y. Yu, W. Dai, X. Fu. Thermo-driven photocatalytic CO reduction and H2 oxidation over ZnO via regulation of reactant gas adsorption electron transfer behavior. Chinese Journal of Catalysis 2021, 42, 1538-1552.
[222]
L. Xue, C. Zhang, T. Shi, S. Liu, H. Zhang, M. Sun, F. Liu, Y. Liu, Y. Wang, X. Gu, S. Zeng. Unraveling the improved CO2 adsorption and COOH* formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO. Chemical Engineering Journal 2023, 452, 139701.
[223]
Z. Feng, H. Chen, S. Zhang, Z. Liu, T. Liu. In-situ construction of Ohmic-contact Ov-Ag/ZnO composites for enhanced highly selective photocatalytic CO2 reduction: Novel insights of kinetic charge transfer characteristics and two staged reactions from in-situ XPS and FTIR analyses and DFT calculations. Chemical Engineering Journal 2025, 506, 159981.
[224]
M. Mu, L. Meng, S. Ma, W. Chen, X. Yin, G. Bai. Interfacial imine-bridging and charge directional migration dual regulation of ZnO/covalent organic frameworks S-scheme heterostructure for boosting photocatalytic CO2 reduction. Journal of Colloid and Interface Science 2025, 686, 63-74.
[225]
J.A. Singh, A.S. Hoffman, J. Schumann, A. Boubnov, A.S. Asundi, S.S. Nathan, J. Nørskov, S.R. Bare, S.F. Bent. Role of Co2C in ZnO-promoted Co catalysts for alcohol synthesis from syngas. ChemCatChem 2019, 11, 799-809.
[226]
S. Jin, Z. Zhang, D. Li, Y. Wang, C. Lian, M. Zhu. Alcohol-induced strong metal-support interactions in a supported copper/ZnO catalyst. Angewandte Chemie International Edition 2023, 62, e202301563.
[227]
X. Liu, J. Luo, H. Wang, L. Huang, S. Wang, S. Li, Z. Sun, F. Sun, Z. Jiang, S. Wei, W.X. Li, J. Lu. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO1-x/Cu interfaces for methanol synthesis from CO2. Angewandte Chemie International Edition 2022, 61, e202202330.
[228]
W. Jiang, J. Low, K. Mao, D. Duan, S. Chen, W. Liu, C.W. Pao, J. Ma, S. Sang, C. Shu, X. Zhan, Z. Qi, H. Zhang, Z. Liu, X. Wu, R. Long, L. Song, Y. Xiong. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. Journal of the American Chemical Society 2021, 143, 269-278.
[229]
J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang, Y. Zhang, S. Liu, N. Li, H. Zhang, J. Yu, T. Zhai, H.N. Alshareef. Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews 2022, 51, 2972-2990.
[230]
S. Bai, M. Yang, J. Jiang, X. He, J. Zou, Z. Xiong, G. Liao, S. Liu. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Materials and Applications 2021, 5, 1-15.
[231]
J. Wang, Q. Qin, F. Li, Y. Anjarsari, W. Sun, R. Azzahiidah, J. Zou, K. Xiang, H. Ma, J. Jiang, Arramel. Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Letters 2023, 33, 1381-1394.
[232]
R. Subagyo, A. Yudhowijoyo, N.A. Sholeha, S.S. Hutagalung, D. Prasetyoko, M.D. Birowosuto, A. Arramel, J. Jiang, Y. Kusumawati. Recent advances of modification effect in Co3O4-based catalyst towards highly efficient photocatalysis. Journal of Colloid and Interface Science 2023, 650, 1550-1590.
[233]
F. Li, Y. Anjarsari, J. Wang, R. Azzahiidah, J. Jiang, J. Zou, K. Xiang, H. Ma, Arramel. Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Letters 2023, 33, 1321-1331.

脚注

We are grateful for grants from Natural Science Foundation of China (52470184, 51979081, 52100179), Fundamental Research Funds for the Central Universities (B210202052), National Science Funds for Creative Research Groups of China (No. 51421006), and PAPD.


PDF(3681 KB)

Accesses

Citation

Detail

段落导航
相关文章

/