Recent advances of polymer nanocomposites in emerging applications

Geolita Ihsantia Ning Asih, Ande Fudja Rafryanto, Sri Hartati, Xiaoyi Jiang, Alinda Anggraini, Azis Yudhowijoyo, Jizhou Jiang, Arramel

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250105.

PDF(3273 KB)
PDF(3273 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250105. DOI: 10.63823/20250105

作者信息 +

Recent advances of polymer nanocomposites in emerging applications

Author information +
文章历史 +

Abstract

Renewed interest in polymer nanocomposites (PNCs) has garnered significant impact towards next-generation hybrid materials. Owing to the outstanding mechanical, thermal, electrical, and chemical properties of PNCs, the integration of various nanoparticles or other emerging nanofillers into polymer matrices renders their applicability. This review outlines recent progress and a comprehensive overview across multidisciplinary fields of chemistry and physics concepts including surface chemistry and polymer science, emphasizing their enhanced photophysical performance over traditional composites. To examine their promising physicochemical nature, several fabrication techniques are outlined: in situ polymerization, solution blending, melt compounding, and electrospinning. In addition, state-of-the-art characterization tools that cover in situ or operando, including X-ray diffraction, neutron scattering, and various spectroscopic methods, are summarized for nanoscale structures and dynamics interpretation. Driven by stringent requirements for improved interfacial bonding and nanofiller dispersion, recent advancements in computational techniques such as density functional theory (DFT) in combination with machine learning (ML) are introduced to achieve high accuracy in terms of polymer structure predictive design. The multitude of aspects of PNCs embarked on diverse applications spanning from energy sector (fuel cells, solar cells, batteries, and supercapacitors), petroleum engineering (enhanced oil recovery), environmental fields (wastewater treatment via photocatalysis), biomedicine (drug delivery), and in biosensors (high-precision volatile analytes). This review highlights the vast potential of PNCs in addressing technological challenges such as structural complexity and engineering trade-offs. Moreover, several profound future research directions, including scalable fabrication and multifunctional material design are discussed.

Key words

Polymer nanocomposites / density functional theory / nanoscale characterization / energy devices / environmental solutions / biomedical technologies / nanotechnology.

引用本文

导出引用
Geolita Ihsantia Ning Asih, Ande Fudja Rafryanto, Sri Hartati, . [J]. Composite Functional Materials. 2025, 1(1): 20250105 https://doi.org/10.63823/20250105
Geolita Ihsantia Ning Asih, Ande Fudja Rafryanto, Sri Hartati, et al. Recent advances of polymer nanocomposites in emerging applications[J]. Composite Functional Materials. 2025, 1(1): 20250105 https://doi.org/10.63823/20250105

参考文献

[1]
C. Yang, H. Wei, L. Guan, J. Guo, Y. Wang, X. Yan, X. Zhang, S. Wei, Z Guo. Nanocomposites for Energy Storage Polymer, and Anticorrosion Energy Saving. J. Mater. Chem. A 2015, 3 (29), 14929-14941. https://doi.org/10.1039/C5TA02707A.
[2]
Y. Zare, I Shabani. Polymer/Metal Nanocomposites for Biomedical Applications. Mater. Sci. Eng. C 2016, 60, 195-203. https://doi.org/10.1016/j.msec.2015.11.023.
[3]
M. Muhammed Shameem, S. M. Sasikanth, R. Annamalai,R Ganapathi Raman. A Brief Review on Polymer Nanocomposites and Its Applications. Mater. Today Proc. 2021, 45, 2536-2539. https://doi.org/10.1016/j.matpr.2020.11.254.
[4]
K. Mishra, A., M. C. Valodkar. Polymer Nanocomposites for Energy and Fuel Cell Applications. In Properties and Applications of Polymer Nanocomposites:Clay and Carbon Based Polymer Nanocomposites; Tripathy D. K., Sahoo B. P.. Springer Berlin Heidelberg: Berlin, Heidelberg, 2017; pp 107-137. https://doi.org/10.1007/978-3-662-53517-2_6.
[5]
H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C. R. Bowen, C Wan. Interface Design for High Energy Density Polymer Nanocomposites. Chem. Soc. Rev. 2019, 48 (16), 4424-4465. https://doi.org/10.1039/C9CS00043G.
[6]
M. Bassyouni, M. H. Abdel-Aziz, M. Sh. Zoromba, S. M. S. Abdel-Hamid, E Drioli. A Review of Polymeric Nanocomposite Membranes for Water Purification. J. Ind. Eng. Chem. 2019, 73, 19-46. https://doi.org/10.1016/j.jiec.2019.01.045.
[7]
M. Yang, M. Guo, E. Xu, W. Ren, D. Wang, S. Li, S. Zhang, C.-W. Nan, Y Shen. Polymer Nanocomposite Dielectrics for Capacitive Energy Storage. Nat. Nanotechnol. 2024, 19 (5), 588-603. https://doi.org/10.1038/s41565-023-01541-w.
[8]
T. Zahra, S.-R. Kim. Recent Advances in Architectural Designs and Fabrication Strategies of 2D Fillers in Polymer-Based Dielectric Nanocomposites. Mater. Today Energy 2025, 48, 101800. https://doi.org/10.1016/j.mtener.2025.101800.
[9]
C. Cazan, A. Enesca, L Andronic. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13 (12), 2017. https://doi.org/10.3390/polym13122017.
[10]
M Okamoto. Polymer Nanocomposites. Eng 2023, 4 (1), 457-479. https://doi.org/10.3390/eng4010028.
[11]
J. X. Chan, J. F. Wong, M. Petrů, A. Hassan, U. Nirmal, N. Othman, R. A. Ilyas. Effect of Nanofillers on Tribological Properties of Polymer Nanocomposites: A Review on Recent Development. Polymers 2021, 13 (17), 2867. https://doi.org/10.3390/polym13172867.
[12]
J. Sharifi-Rad, C. Quispe, M. Butnariu, L. S. Rotariu, O. Sytar, S. Sestito, S. Rapposelli, M. Akram, M. Iqbal, A. Krishna, N. V. A. Kumar, S. S. Braga, S. M. Cardoso, K. Jafernik, H. Ekiert, N. Cruz-Martins, A. Szopa, M. Villagran, L. Mardones, M. Martorell, A. O. Docea, D Calina. Chitosan Nanoparticles as a Promising Tool in Nanomedicine with Particular Emphasis on Oncological Treatment. Cancer Cell Int. 2021, 21 (1), 318. https://doi.org/10.1186/s12935-021-02025-4.
[13]
A. Kierys, R. Zaleski, W. Buda, S. Pikus, M. Dziadosz, J Goworek. Nanostructured Polymer-Titanium Composites and Titanium Oxide through Polymer Swelling in Titania Precursor. Colloid Polym. Sci. 2013, 291 (6), 1463-1470. https://doi.org/10.1007/s00396-012-2881-x.
[14]
A. Guchait, A. Saxena, S. Chattopadhyay, T Mondal. Influence of Nanofillers on Adhesion Properties of Polymeric Composites. ACS Omega 2022, 7 (5), 3844-3859. https://doi.org/10.1021/acsomega.1c05448.
[15]
J. Huang, J. Zhou, M Liu. Interphase in Polymer Nanocomposites. JACS Au 2022, 2 (2), 280-291. https://doi.org/10.1021/jacsau.1c00430.
[16]
X. Sun, C. Huang, L. Wang, L. Liang, Y. Cheng, W. Fei, Y Li. Recent Progress in Graphene/Polymer Nanocomposites. Adv. Mater. 2021, 33 (6), 2001105. https://doi.org/10.1002/adma.202001105.
[17]
M. S. A. Darwish, M. H. Mostafa, L. M. Al-Harbi. Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci. 2022, 23 (3), 1023. https://doi.org/10.3390/ijms23031023.
[18]
Dantas De Oliveira A.. Augusto Gonçalves Beatrice C. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites- Recent Evolutions; Sivasankaran,S., Ed. ;IntechOpen, 2019. https://doi.org/10.5772/intechopen.81329.
[19]
Y. Zamani Keteklahijani, A. Shayesteh Zeraati, F. Sharif, E. P. L. Roberts, U Sundararaj. In Situ Chemical Polymerization of Conducting Polymer Nanocomposites: Effect of DNA-Functionalized Carbon Nanotubes and Nitrogen-Doped Graphene as Catalytic Molecular Templates. Chem. Eng. J. 2020, 389, 124500. https://doi.org/10.1016/j.cej.2020.124500.
[20]
X. Wu, S. Takeshita, K. Tadumi, W. Dong, S. Horiuchi, H. Niino, T. Furuya, S Yoda. Preparation of Noble Metal/Polymer Nanocomposites via in Situ Polymerization and Metal Complex Reduction. Mater. Chem. Phys. 2019, 222, 300-308. https://doi.org/10.1016/j.matchemphys.2018.10.031.
[21]
S. Cheng, G. S. Grest. Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation. ACS Macro Lett. 2016, 5 (6), 694-698. https://doi.org/10.1021/acsmacrolett.6b00263.
[22]
L. I. Hussein, A. H. Abdaleem, M. S. A. Darwish, M. A. Elsawy, M. H. Mostafa. Chitosan/TiO 2 Nanocomposites: Effect of Microwave Heating and Solution Mixing Techniques on Physical Properties. Egypt. J. Chem. 2020, 63 (2), 449-460. https://doi.org/10.21608/ejchem.2020.20908. 2245.
[23]
S. K. Shakshooki, M. O. Darwish, N. A. Abouzaid. Titanium Oxide-Vanadyl Phosphate Nanocomposite Self-Support Aniline, Indole, Pyrrole and Carbazole Polymerization Agent. Nano-Struct. Nano-Objects 2025, 43, 101531. https://doi.org/10.1016/j.nanoso.2025.101531.
[24]
M. S. A. Darwish, M. H. Mostafa, L. I. Hussein, A. H. Abdaleem, M. A. Elsawy. Preparation, Characterization, Mechanical and Biodegradation Behavior of Polypropylene - Chitosan/ZnO Nanocomposite. Polym. -Plast. Technol. Mater. 2021, 1-11. https://doi.org/10.1080/25740881.2021.1924200.
[25]
E. A. Franco-Urquiza. Clay-Based Polymer Nanocomposites: Essential Work of Fracture. Polymers 2021, 13 (15), 2399. https://doi.org/10.3390/polym13152399.
[26]
A. Chandra, L.-S. Turng, P. Gopalan, R. M. Rowell, S Gong. Study of Utilizing Thin Polymer Surface Coating on the Nanoparticles for Melt Compounding of Polycarbonate/Alumina Nanocomposites and Their Optical Properties. Compos. Sci. Technol. 2008, 68 (3-4), 768-776. https://doi.org/10.1016/j.compscitech.2007.08.027.
[27]
J. H. Talal, D. B. Mohammed, K. H. Jawad. Fabrication of Hydrophobic Nanocomposites Coating Using Electrospinning Technique For Various Substrate. J. Phys. Conf. Ser. 2018, 1032, 012033. https://doi.org/10.1088/1742-6596/1032/1/012033.
[28]
S. Hartati, A. Zulfi, P. Y. D. Maulida, A. Yudhowijoyo, M. Dioktyanto, K. E. Saputro, A. Noviyanto, N. T. Rochman. Synthesis of Electrospun PAN/TiO2 /Ag Nanofibers Membrane As Potential Air Filtration Media with Photocatalytic Activity. ACS Omega 2022, 7 (12), 10516-10525. https://doi.org/10.1021/acsomega.2c00015.
[29]
V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, S. Chowdhury, Y. K. Vohra. Nanostructured Biocomposite Scaffolds Based on Collagen Coelectrospun with Nanohydroxyapatite. Biomacromolecules 2007, 8 (2), 631-637. https://doi.org/10.1021/bm060879w.
[30]
K. R. Adhikari, I. Stanishevskaya, P. C. Caracciolo, G. A. Abraham, V Thomas. Novel Poly(Ester Urethane Urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules 2021, 26 (13), 3847. https://doi.org/10.3390/molecules26133847.
[31]
R. Subagyo, S. Saepurahman, E. Zain, S. Hartati, L. Zhang, K. A. Kurnia, A. Arramel, R. Ediati, S. Akhlus, Y Kusumawati. Elevating the Photodecolorization Efficiency for Synthetic and Actual Colored Wastewater through the Integration of Chitosan and Zinc Oxide Layers on a Fiberglass Flat Sheets. Case Stud. Chem. Environ. Eng. 2024, 10, 100875. https://doi.org/10.1016/j.cscee.2024.100875.
[32]
F. C. Krebs. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93 (4), 394-412. https://doi.org/10.1016/j.solmat.2008.10.004.
[33]
J.-W. Kang, Y.-J. Kang, S. Jung, M. Song, D.-G. Kim, C. Su Kim,S. H. Kim. Fully Spray-Coated Inverted Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2012, 103, 76-79. https://doi.org/10.1016/j.solmat.2012.04.027.
[34]
F. Aziz, A. F. Ismail. Spray Coating Methods for Polymer Solar Cells Fabrication: A Review. Mater. Sci. Semicond. Process. 2015, 39, 416-425. https://doi.org/10.1016/j.mssp. 2015.05.019.
[35]
V Ginzburg, V.. Density Functional Theory-Based Modeling of Polymer Nanocomposites. In Theory and Modeling of Polymer Nanocomposites; Ginzburg V. V., Hall L. M.. Springer International Publishing: Cham, 2021; pp 23-44.
[36]
X. Zhang, B.-W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.-W. Nan. Superior Energy Storage Performances of Polymer Nanocomposites via Modification of Filler/Polymer Interfaces. Adv Mater Interfaces 2018, 5 (11), 1800096. https://doi.org/10.1002/admi.201800096.
[37]
C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He, Q Li. Polymer/Molecular Semiconductor All-Organic Composites for High-Temperature Dielectric Energy Storage. Nat. Commun. 2020, 11 (1), 3919. https://doi.org/10.1038/s41467-020-17760-x.
[38]
Z.-H. Shen, Z.-W. Bao, X.-X. Cheng, B.-W. Li, H.-X. Liu, Y. Shen, L.-Q. Chen, X.-G. Li,C.-W. Nan. Designing Polymer Nanocomposites with High Energy Density Using Machine Learning. Npj Comput. Mater. 2021, 7 (1), 110. https://doi.org/10.1038/s41524-021-00578-6.
[39]
S. Wu, Y. Kondo, M. Kakimoto, B. Yang, H. Yamada, I. Kuwajima, G. Lambard, K. Hongo, Y. Xu, J. Shiomi, C. Schick, J. Morikawa, R Yoshida. Machine-Learning-Assisted Discovery of Polymers with High Thermal Conductivity Using a Molecular Design Algorithm. Npj Comput. Mater. 2019, 5 (1), 66. https://doi.org/10.1038/s41524-019-0203-2.
[40]
E. Champa-Bujaico, P. García-Díaz, A. M. Díez-Pascual. Machine Learning for Property Prediction and Optimization of Polymeric Nanocomposites: A State-of-the-Art. Int. J. Mol. Sci. 2022, 23 (18), 10712.
[41]
D. Ebrahimibagha, S. Arroyo Armida, S. Datta, M Ray. Machine Learning Based Models to Investigate the Thermoelectric Performance of Carbon Nanotube-Polyaniline Nanocomposites. Comput. Mater. Sci. 2024, 232, 112601. https://doi.org/10.1016/j.commatsci.2023.112601.
[42]
Y. Liu, W. Zheng, H. Ai, H. Zhou, L. Feng, L. Cheng, R. Guo, X Song. Application of Machine Learning in Predicting the Thermal Conductivity of Single-Filler Polymer Composites. Mater. Today Commun. 2024, 39, 109116. https://doi.org/10.1016/j.mtcomm.2024.109116.
[43]
W. Ge, R. De Silva, Y. Fan, S. A. Sisson, M. H. Stenzel. Machine Learning in Polymer Research. Adv. Mater. 2025, 37 (11), 2413695. https://doi.org/10.1002/adma.202413695.
[44]
I. Zaporotskova, O. Kakorina, L. Kozhitov, D. Muratov, N. Boroznina, S. Boroznin, A Panchenko. Polymer Nanocomposite Based on Pyrolyzed Polyacrylonitrile Doped with Carbon Nanotubes: Synthesis, Properties, and Mechanism of Formation. Polymers 2024, 16 (10), 1308.
[45]
H. Zhu, Y Xie. Hydrogen-Bonding Interaction Promoted Supercapacitance of Polylactic Acid-Graphene-Microcrystalline Cellulose/Polyaniline Nanofiber. Mater. Today Chem. 2023, 30, 101535. https://doi.org/10.1016/j.mtchem.2023.101535.
[46]
Y. Qu, L. Lin, S. Gao, Y. Yang, H. Huang, X. Li, H. Ren, W Luo. A Molecular Dynamics Study on Adsorption Mechanisms of Polar, Cationic, and Anionic Polymers on Montmorillonite. RSC Adv. 2023, 13 (3), 2010-2023. https://doi.org/10.1039/D2RA07341B.
[47]
D. T. Reis, I. H. S. Ribeiro, D. H. Pereira. DFT Study of the Application of Polymers Cellulose and Cellulose Acetate for Adsorption of Metal Ions (Cd2+, Cu2+ and Cr3+) Potentially Toxic. Polym. Bull. 2020, 77 (7), 3443-3456. https://doi.org/10.1007/s00289-019-02926-5.
[48]
Y. Chen, D. Xu, S. Zhang, R. Tan, L. Li, X.-Y. Liu. Density Functional Theory Calculations on the Adsorption and Degradation Characteristics of Ronidazole on the TiO2 Surface. Int. J. Quantum Chem. 2021, 121 (13), e26648. https://doi.org/10.1002/qua.26648.
[49]
J. A. Hernández Fernández, J. A. Prieto Palomo, R Ortega-Toro. Application of DFT and Experimental Tests for the Study of Compost Formation Between Chitosan-1, 3-Dichloroketone with Uses for the Removal of Heavy Metals in Wastewater. J. Compos. Sci. 2025, 9 (2), 91. https://doi.org/10.3390/jcs9020091.
[50]
S. S. Meshkat, S. Hoseinzadeh, Z. Hosseini-dastgerdi, R. Mehrabi, E. Ghasemy, M Esrafili. DFT Calculation and Experimental Study of Nitrogen-Doped Carbon Nanotube Nanocomposite in As+3 Toxic Ions Removal. Int. J. Environ. Sci. Technol. 2023, 20 (8), 8287-8302. https://doi.org/10.1007/s13762-023-04976-9.
[51]
P. A. Townsend. Adsorption in Action: Molecular Dynamics as a Tool to Study Adsorption at the Surface of Fine Plastic Particles in Aquatic Environments. ACS Omega 2024, 9 (5), 5142-5156. https://doi.org/10.1021/acsomega.3c07488.
[52]
R. Syah, A. Al-Khowarizmi, M. Elveny, A Khan. Machine Learning Based Simulation of Water Treatment Using LDH/MOF Nanocomposites. Environ. Technol. Innov. 2021, 23, 101805. https://doi.org/10.1016/j.eti.2021.101805.
[53]
R. Singh, V Mahto. Synthesis, Characterization and Evaluation of Polyacrylamide Graft Starch/Clay Nanocomposite Hydrogel System for Enhanced Oil Recovery. Pet. Sci. 2017, 14 (4), 765-779. https://doi.org/10.1007/s12182-017-0185-y.
[54]
A. M. Moghadam, M Sefti, Vafaie, M Salehi, Baghban, A Koohi, M Dadvand; and Sheykhan. Effect of Nanoclay along with Other Effective Parameters on Gelation Time of Hydro Polymer Gels. J. Macromol. Sci. Part B 2012, 51 (10), 2015-2025. https://doi.org/10.1080/00222348.2012.661667.
[55]
F. Karchoubi, R. Afshar Ghotli, H. Pahlevani, M Baghban Salehi. New Insights into Nanocomposite Hydrogels; a Review on Recent Advances in Characteristics and Applications. Adv. Ind. Eng. Polym. Res. 2024, 7 (1), 54-78. https://doi.org/10.1016/j.aiepr.2023.06.002.
[56]
M. Vatanparast, Z Shariatinia. Hexagonal Boron Nitride Nanosheet as Novel Drug Delivery System for Anticancer Drugs: Insights from DFT Calculations and Molecular Dynamics Simulations. J. Mol. Graph. Model. 2019, 89, 50-59. https://doi.org/10.1016/j.jmgm.2019.02.012.
[57]
P. Sathishkumar, Z. Li, R. Govindan, R. Jayakumar, C. Wang,F Long Gu. Zinc Oxide-Quercetin Nanocomposite as a Smart Nano-Drug Delivery System: Molecular-Level Interaction Studies. Appl. Surf. Sci. 2021, 536, 147741. https://doi.org/10.1016/j.apsusc.2020.147741.
[58]
B. E. Souza, L. Donà, K. Titov, P. Bruzzese, Z. Zeng, Y. Zhang, A. S. Babal, A. F. Möslein, M. D. Frogley, M. Wolna, G. Cinque, B. Civalleri, J.-C. Tan. Elucidating the Drug Release from Metal-Organic Framework Nanocomposites via In Situ Synchrotron Microspectroscopy and Theoretical Modeling. ACS Appl. Mater. Interfaces 2020, 12 (4), 5147-5156. https://doi.org/10.1021/acsami.9b21321.
[59]
M. Kamel, H. Raissi, A. Morsali, K Mohammadifard. Density Functional Theory Study towards Investigating the Adsorption Properties of the γ-Fe2O3 Nanoparticles as a Nanocarrier for Delivery of Flutamide Anticancer Drug. Adsorption 2020, 26 (6), 925-939. https://doi.org/10.1007/s10450-019-00056-y.
[60]
O. C. Adekoya, G. J. Adekoya, R. E. Sadiku, Y. Hamam, S. S. Ray. Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS Omega 2022, 7 (38), 33808-33820. https://doi.org/10.1021/acsomega. 2c02347.
[61]
R. S. Saini, S. A. Mosaddad, A Heboyan. Application of Density Functional Theory for Evaluating the Mechanical Properties and Structural Stability of Dental Implant Materials. BMC Oral Health 2023, 23 (1), 958. https://doi.org/10.1186/s12903-023-03691-8.
[62]
K. Gholivand, S. A. Alavinasab Ardebili, M. Mohammadpour, R. Eshaghi Malekshah, S. Hasannia, B Onagh. Preparation and Examination of a Scaffold Based on Hydroxylated Polyphosphazene for Tissue Engineering: In Vitro and in Vivo Studies. J. Appl. Polym. Sci. 2022, 139 (20), 52179. https://doi.org/10.1002/app.52179.
[63]
D. Bian, Y. Pilehvar, S. Kousha, J Bi. Bioactive Wound Healing 3D Structure Based on Chitosan Hydrogel Loaded with Naringin/Cyclodextrin Inclusion Nanocomplex. ACS Omega 2024, 9 (9), 10566-10576. https://doi.org/10.1021/acsomega.3c08785.
[64]
N. Sapre, Rutuja Gumathannavar, Mandar Shirolkar, Swayamprava Dalai, Poonam Kanojiya, Sunil Saroj; and A Kulkarni. Optically Tuneable Chitosan Nanoparticles for Biomedical Imaging Application. Sens. Technol. 2024, 2 (1), 2428590. https://doi.org/10.1080/28361466.2024.2428590.
[65]
C. Daldossi, D. Perilli, L. Ferraro, C Di Valentin. Functionalizing TiO2 Nanoparticles with Fluorescent Cyanine Dye for Photodynamic Therapy and Bioimaging: A DFT and TDDFT Study. J. Phys. Chem. C 2024, 128 (7), 2978-2989. https://doi.org/10.1021/acs.jpcc.3c08298.
[66]
E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W Yang. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498-6506. https://doi.org/10.1021/ja100936w.
[67]
Y. Wang, D. Liu, R. Liao, G. Zhang, M. Zhang, X Li. Prediction of Hydrogel Degradation Time Based on Central Composite Design. ACS Omega 2024, 9 (1), 719-729. https://doi.org/10.1021/acsomega.3c06417.
[68]
A. Kumar, D. Tripathi, R. K. Rawat, P Chauhan. Hybrid MoS2/PEDOT:PSS Sensor for Volatile Organic Compounds Detection at Room Temperature: Experimental and DFT Insights. ACS Appl. Nano Mater. 2024, 7 (23), 27599-27611. https://doi.org/10.1021/acsanm.4c05614.
[69]
S. Wang, Z. Luo, J. Liang, J. Hu, N. Jiang, J. He, Q Li. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS Nano 2022, 16 (9), 13612-13656. https://doi.org/10.1021/acsnano.2c07404.
[70]
K. Randazzo, M. Bartkiewicz, B. Graczykowski, D. Cangialosi, G. Fytas, B. Zuo, R. D. Priestley. Direct Visualization and Characterization of Interfacially Adsorbed Polymer atop Nanoparticles and within Nanocomposites. Macromolecules 2021, 54 (21), 10224-10234. https://doi.org/10.1021/acs.macromol.1c01557.
[71]
S. Koneti, L. Roiban, F. Dalmas, C. Langlois, A.-S. Gay, A. Cabiac, T. Grenier, H. Banjak, V. Maxim, T Epicier. Fast Electron Tomography: Applications to Beam Sensitive Samples and in Situ TEM or Operando Environmental TEM Studies. Mater. Charact. 2019, 151, 480-495. https://doi.org/10.1016/j.matchar.2019.02.009.
[72]
W. Albrecht, S Bals. Fast Electron Tomography for Nanomaterials. J. Phys. Chem. C 2020, 124 (50), 27276-27286. https://doi.org/10.1021/acs.jpcc.0c08939.
[73]
H Jinnai. Electron Microscopy for Polymer Structures. Microscopy 2022, 71 (Supplement_1), i148-i164. https://doi.org/10.1093/jmicro/dfab057.
[74]
A. Kausar, I. Ahmad, T. Zhao, O. Aldaghri, K. H. Ibnaouf, M. H. Eisa. Graphene Nanocomposites as Innovative Materials for Energy Storage and Conversion—Design and Headways. Int. J. Mol. Sci. 2023, 24 (14). https://doi.org/10.3390/ijms241411593.
[75]
B. Kuei, M. P. Aplan, J. H. Litofsky, E. D. Gomez. New Opportunities in Transmission Electron Microscopy of Polymers. Mater. Sci. Eng. R Rep. 2020, 139, 100516. https://doi.org/10.1016/j.mser.2019.100516.
[76]
I. Biran, L. Houben, A. Kossoy, B Rybtchinski. Transmission Electron Microscopy Methodology to Analyze Polymer Structure with Submolecular Resolution. J. Phys. Chem. C 2024, 128 (14), 5988-5995. https://doi.org/10.1021/acs.jpcc. 3c06977.
[77]
R. Ramachandramoorthy, A. Beese, H Espinosa. In Situ Electron Microscopy Tensile Testing of Constrained Carbon Nanofibers. Int. J. Mech. Sci. 2018, 149, 452-458. https://doi.org/10.1016/j.ijmecsci.2017.09.028.
[78]
A. Delp, A. Becker, D. Hülsbusch, R. Scholz, M. Müller, B. Glasmacher, F Walther. In Situ Characterization of Polycaprolactone Fiber Response to Quasi-Static Tensile Loading in Scanning Electron Microscopy. Polymers 2021, 13 (13), 2090.
[79]
C. Jiang, H. Lu, H. Zhang, Y. Shen, Y Lu. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials. Scanning 2017, 2017 (1), 1985149. https://doi.org/10.1155/2017/1985149.
[80]
E. Van Vlierberghe, S. F. Gayot, N. Klavzer, C. Breite, T. Pardoen, Y Swolfs. Microstructural Strain Localisation Phenomena in Fibre-Reinforced Polymer Composites: Insights from Nanoscale Digital Image Correlation and Finite Element Modelling. Compos. Sci. Technol. 2024, 258, 110842. https://doi.org/10.1016/j.compscitech.2024.110842.
[81]
D. Wang, T. P. Russell. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules 2018, 51 (1), 3-24. https://doi.org/10.1021/acs.macromol.7b01459.
[82]
A. Dazzi, C. B. Prater. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem. Rev. 2017, 117 (7), 5146-5173. https://doi.org/10.1021/acs.chemrev.6b00448.
[83]
D. Raghavan, X. Gu, T. Nguyen, M. VanLandingham, A Karim. Mapping Polymer Heterogeneity Using Atomic Force Microscopy Phase Imaging and Nanoscale Indentation. Macromolecules 2000, 33 (7), 2573-2583. https://doi.org/10.1021/ma991206r.
[84]
P. Nguyen-Tri, P. Ghassemi, P. Carriere, S. Nanda, A. A. Assadi, D. D. Nguyen. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers 2020, 12 (5). https://doi.org/10.3390/polym12051142.
[85]
X. Liang, T. Kojima, M. Ito, N. Amino, H. Liu, M. Koishi, K Nakajima. In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy. ACS Appl. Mater. Interfaces 2023, 15 (9), 12414-12422. https://doi.org/10.1021/acsami.2c22971.
[86]
dos Santos, A. C. V. D., B. Lendl, G Ramer. Systematic Analysis and Nanoscale Chemical Imaging of Polymers Using Photothermal-Induced Resonance (AFM-IR) Infrared Spectroscopy. Polym. Test. 2022, 106, 107443. https://doi.org/10.1016/j.polymertesting.2021.107443.
[87]
D. W. Collinson, D. Nepal, J. Zwick, R. H. Dauskardt. Gas Cluster Etching for the Universal Preparation of Polymer Composites for Nano Chemical and Mechanical Analysis with AFM. Appl. Surf. Sci. 2022, 599, 153954. https://doi.org/10.1016/j.apsusc.2022.153954.
[88]
S. Kenkel, S. Mittal, R Bhargava. Closed-Loop Atomic Force Microscopy-Infrared Spectroscopic Imaging for Nanoscale Molecular Characterization. Nat. Commun. 2020, 11 (1), 3225. https://doi.org/10.1038/s41467-020-17043-5.
[89]
X Liang. Visualization of Nanomechanical Properties of Polymer Composites Using Atomic Force Microscopy. Polym. J. 2023, 55 (9), 913-920. https://doi.org/10.1038/s41428-023-00790-9.
[90]
X. Li, S. He, Y. Jiang, J. Wang, Y. Yu, X. Liu, F. Zhu, Y. Xie, Y. Li, C. Ma, Z. Shen, B. Li, Y. Shen, X. Zhang, S. Zhang, C.-W. Nan. Unraveling Bilayer Interfacial Features and Their Effects in Polar Polymer Nanocomposites. Nat. Commun. 2023, 14 (1), 5707. https://doi.org/10.1038/s41467-023-41479-0.
[91]
W. Zhu, G. Rui, M. T. Wetherington, J. Lee, S. H. Kim, Q. M. Zhang. AFM-IR Study of Interfacial Nanostructures in High-Temperature Dilute Nanocomposites. Appl. Phys. Lett. 2024, 124 (16), 162901. https://doi.org/10.1063/5.0205468.
[92]
H. Zhou, Y. Tang, S Zhang. Chapter 2 - Advanced Spectroscopic Technique for the Study of Nanocontainers:Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR). In SmartNanocontainers; Nguyen-TriP., DoT.-O., NguyenT. A.. Elsevier, 2020; pp 7-17. https://doi.org/10.1016/B978-0-12-816770-0.00002-2.
[93]
A. J. Ryan, M. J. Elwell, W Bras. Using Synchrotron Radiation to Study Polymer Processing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1995, 97 (1), 216-223. https://doi.org/10.1016/0168-583X(94) 00736-5.
[94]
W. Li, W. Yu, J. Zhu, M. Qiao, H. Guo, X. Li, K. Cui, L Li. Synchrotron Radiation X-Ray Scattering Approaching Real Industrial Processing of Polymer. Polym. Sci. Technol. 2025. https://doi.org/10.1021/polymscitech.5c00008.
[95]
H. Zhang, W. You, F. Bian, W Yu. Heterogeneous Percolation in Poly(Methylvinylsiloxane)/Silica Nanocomposites: The Role of Polymer-Particle Interaction. Macromolecules 2022, 55 (19), 8834-8845. https://doi.org/10.1021/acs.macromol.2c01615.
[96]
M. Zienkiewicz-Strzałka, A. Deryło-Marczewska, S Pikus. The Synthesis and Nanostructure Investigation of Noble Metal-Based Nanocomposite Materials. J. Mater. Sci. 2021, 56 (23), 13128-13145. https://doi.org/10.1007/s10853-021-06127-2.
[97]
E. Chi, Y. Tang, Z Wang. In Situ SAXS and WAXD Investigations of Polyamide 66/Reduced Graphene Oxide Nanocomposites During Uniaxial Deformation. ACS Omega 2021, 6 (17), 11762-11771. https://doi.org/10.1021/acsomega. 1c01365.
[98]
T. Kamal, S.-Y. Park, M.-C. Choi, Y.-W. Chang, W.-T. Chuang, U. S. Jeng. An In-Situ Simultaneous SAXS and WAXS Survey of PEBAX® Nanocomposites Reinforced with Organoclay and POSS during Uniaxial Deformation. Polymer 2012, 53 (15), 3360-3367. https://doi.org/10.1016/j.polymer. 2012.05.037.
[99]
D. Giuntini, A. Davydok, M. Blankenburg, B. Domènech, B. Bor, M. Li, I. Scheider, C. Krywka, M. Müller, G. A. Schneider. Deformation Behavior of Cross-Linked Supercrystalline Nanocomposites: An in Situ SAXS/WAXS Study during Uniaxial Compression. Nano Lett. 2021, 21 (7), 2891-2897. https://doi.org/10.1021/acs.nanolett.0c05041.
[100]
F. S. Navarro Oliva, S. N. Murthy, L. Lenglet, A. Ospina, S. Weigand, F Bedoui. In-Situ WAXS and SAXS Microstructural Investigation of Poly(Vinylidene Fluoride)- Fe3O4 Coaxial-Electrospun Nanocomposites under Thermal and Mechanical Loading: Nanoparticles Size Effects on Fibers Molecular Orientation, Mechanical Properties and Crystalline Polymorphs. Polymer 2024, 308, 127406. https://doi.org/10.1016/j.polymer.2024.127406.
[101]
H. Chen, D. T. L. Alexander, C Hébert. Leveraging Machine Learning for Advanced Nanoscale X-Ray Analysis: Unmixing Multicomponent Signals and Enhancing Chemical Quantification. Nano Lett. 2024, 24 (33), 10177-10185. https://doi.org/10.1021/acs.nanolett.4c02446.
[102]
Q. Wang, W. He, Y. Deng, Y. Zhang, W. K. Chern, Z. Lv, Z Chen. Machine Learning-Driven Interfacial Characterization and Dielectric Breakdown Prediction in Polymer Nanocomposites. Compos. Part B Eng. 2025, 296, 112226. https://doi.org/10.1016/j.compositesb.2025.112226.
[103]
M. Röding, P. Tomaszewski, S. Yu, M. Borg, J Rönnols. Machine Learning-Accelerated Small-Angle X-Ray Scattering Analysis of Disordered Two- and Three-Phase Materials. Front. Mater. 2022, 9, 956839. https://doi.org/10.3389/fmats.2022.956839.
[104]
Y. Liu, Y. Li, G. Yang, X. Zheng, S Zhou. Multi-Stimulus-Responsive Shape-Memory Polymer Nanocomposite Network Cross-Linked by Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2015, 7 (7), 4118-4126. https://doi.org/10.1021/am5081056.
[105]
D. Son, S. Cho, J. Nam, H. Lee, M Kim. X-Ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level. Polymers 2020, 12 (5), 1053. https://doi.org/10.3390/polym12051053.
[106]
A.-C. Genix, J Oberdisse. Structure and Dynamics of Polymer Nanocomposites Studied by X-Ray and Neutron Scattering Techniques. Curr. Opin. Colloid Interface Sci. 2015, 20 (4), 293-303. https://doi.org/10.1016/j.cocis.2015.10.002.
[107]
Y. Wei, M. J. A. Hore. Characterizing Polymer Structure with Small-Angle Neutron Scattering: A Tutorial. J. Appl. Phys. 2021, 129 (17), 171101. https://doi.org/10.1063/5.0045841.
[108]
P. J. Flory. The Configuration of Real Polymer Chains. J. Chem. Phys. 1949, 17 (3), 303-310. https://doi.org/10.1063/1.1747243.
[109]
Y. Shui, L. Huang, C. Wei, J. Chen, L. Song, G. Sun, A. Lu, D Liu. Intrinsic Properties of the Matrix and Interface of Filler Reinforced Silicone Rubber: An in Situ Rheo-SANS and Constitutive Model Study. Compos. Commun. 2021, 23, 100547. https://doi.org/10.1016/j.coco.2020.100547.
[110]
Y. Tian, Z. Wang, S. Cao, D. Liu, Y. Zhang, C. Chen, Z. Jiang, J. Ma, Y Wang. Connective Tissue Inspired Elastomer-Based Hydrogel for Artificial Skin via Radiation-Indued Penetrating Polymerization. Nat. Commun. 2024, 15 (1), 636. https://doi.org/10.1038/s41467-024-44949-1.
[111]
Q. Yang, J. Cai, G. Li, R. Gao, Z. Han, J. Han, D. Liu, L. Song, Z. Shi, D. Wang, G. Wang, W. Zheng, G. Zhou, Y Song. Chlorine Bridge Bond-Enabled Binuclear Copper Complex for Electrocatalyzing Lithium-Sulfur Reactions. Nat. Commun. 2024, 15 (1), 3231. https://doi.org/10.1038/s41467-024-47565-1.
[112]
U. Böhme, U Scheler. Interfaces in Polymer Nanocomposites - An NMR Study; Jeju Island, Korea, 2016; p 090009. https://doi.org/10.1063/1.4942305.
[113]
P. H. De Souza, R. F. Bianchi, K. Dahmouche, P. Judeinstein, R. M. Faria, T. J. Bonagamba. Solid-State NMR, Ionic Conductivity, and Thermal Studies of Lithium-Doped Siloxane-Poly(Propylene Glycol) Organic-Inorganic Nanocomposites. Chem. Mater. 2001, 13 (10), 3685-3692. https://doi.org/10.1021/cm011023v.
[114]
V. Kumar, R. R. Reddy, B. V. N. P. Kumar, C. V. Avadhani, S. Ganapathy, N. Chandrakumar, S Sivaram. Lithium Speciation in the LiPF6 /PC Electrolyte Studied by Two-Dimensional Heteronuclear Overhauser Enhancement and Pulse-Field Gradient Diffusometry NMR. J. Phys. Chem. C 2019, 123 (15), 9661-9672. https://doi.org/10.1021/acs.jpcc. 8b11599.
[115]
Y. Wang, W. Chen, Q. Zhao, G. Jin, Z. Xue, Y. Wang, T Mu. Ionicity of Deep Eutectic Solvents by Walden Plot and Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). Phys. Chem. Chem. Phys. 2020, 22 (44), 25760-25768. https://doi.org/10.1039/D0CP01431A.
[116]
X. Fu, Y. Liu, W. Wang, L. Han, J. Yang, M. Ge, Y. Yao, H Liu. Probing the Fast Lithium-Ion Transport in Small-Molecule Solid Polymer Electrolytes by Solid-State NMR. Macromolecules 2020, 53 (22), 10078-10085. https://doi.org/10.1021/acs.macromol.0c01521.
[117]
R. Zettl, M. Gombotz, D. Clarkson, S. G. Greenbaum, P. Ngene, P. E. De Jongh, H. M. R. Wilkening. Li-Ion Diffusion in Nanoconfined LiBH4 -LiI/Al2 O3 : From 2D Bulk Transport to 3D Long-Range Interfacial Dynamics. ACS Appl. Mater. Interfaces 2020, 12 (34), 38570-38583. https://doi.org/10.1021/acsami.0c10361.
[118]
Q. T. Easter. Biopolymer Hydroxyapatite Composite Materials: Adding Fluorescence Lifetime Imaging Microscopy to the Characterization Toolkit. Nano Sel. 2022, 3 (4), 751-765. https://doi.org/10.1002/nano.202100014.
[119]
H. Vu, J. W. Woodcock, A. Krishnamurthy, J. Obrzut, J. W. Gilman, E. B. Coughlin. Visualization of Polymer Dynamics in Cellulose Nanocrystal Matrices Using Fluorescence Lifetime Measurements. ACS Appl. Mater. Interfaces 2022, 14 (8), 10793-10804. https://doi.org/10.1021/acsami.1c21906.
[120]
C. B. Dunn, S. Valdez, Z Qiang. Single-Molecule Fluorescence Microscopy for Imaging Chemical Reactions: Recent Progress and Future Opportunities for Advancing Polymer Systems. J. Polym. Sci. 2024, 62 (7), 1235-1259. https://doi.org/10.1002/pol.20230621.
[121]
S. Jiang, X. Zhang, Y. Zhang, C. Hu, R. Zhang, Y. Zhang, Y. Liao, Z. J. Smith, Z. Dong, J. G. Hou. Subnanometer-Resolved Chemical Imaging via Multivariate Analysis of Tip-Enhanced Raman Maps. Light Sci. Appl. 2017, 6 (11), e17098-e17098. https://doi.org/10.1038/lsa.2017.98.
[122]
T. Itoh, M. Procházka, Z.-C. Dong, W. Ji, Y. S. Yamamoto, Y. Zhang, Y Ozaki. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem. Rev. 2023, 123 (4), 1552-1634. https://doi.org/10.1021/acs.chemrev.2c00316.
[123]
C. Höppener, J. Aizpurua, H. Chen, S. Gräfe, A. Jorio, S. Kupfer, Z. Zhang, V Deckert. Tip-Enhanced Raman Scattering. Nat. Rev. Methods Primer 2024, 4 (1), 47. https://doi.org/10.1038/s43586-024-00323-5.
[124]
A. Foti, S. Venkatesan, B. Lebental, G. Zucchi, R Ossikovski. Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubes. Nanomaterials 2022, 12 (3), 451. https://doi.org/10.3390/nano12030451.
[125]
B.-S. Yeo, E. Amstad, T. Schmid, J. Stadler, R Zenobi. Nanoscale Probing of a Polymer-Blend Thin Film with Tip-Enhanced Raman Spectroscopy. Small 2009, 5 (8), 952-960. https://doi.org/10.1002/smll.200801101.
[126]
H. Jamil, M. Faizan, M. Adeel, T. Jesionowski, G. Boczkaj, A Balčiūnaitė. Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review. Molecules 2024, 29 (6). https://doi.org/10.3390/molecules29061267.
[127]
A. Wesełucha-Birczyńska, M. Świętek, E. Sołtysiak, P. Galiński, Ł. Płachta, K. Piekara, M Błażewicz. Raman Spectroscopy and the Material Study of Nanocomposite Membranes from Poly(ε-Caprolactone) with Biocompatibility Testing in Osteoblast-like Cells. Analyst 2015, 140 (7), 2311-2320. https://doi.org/10.1039/C4AN02284J.
[128]
M. Pajda, A. Wesełucha-Birczyńska, A. Kołodziej, M. Świętek, E. Długoń, M. Ziąbka, M Błażewicz. A Correlation of Raman Data with the Nanomechanical Results of Polymer Nanomaterials with Carbon Nanoparticles. J. Mol. Struct. 2022, 1264, 133305. https://doi.org/10.1016/j.molstruc.2022. 133305.
[129]
X. Yan, H. Sato, Y Ozaki. Chapter 4 - Raman and Tip-Enhanced Raman Scattering Spectroscopy Studies of Polymer Nanocomposites. In Spectroscopy of Polymer Nanocomposites; Thomas S., Rouxel D., Ponnamma D.. William Andrew Publishing, 2016; pp 88-111. https://doi.org/10.1016/B978-0-323-40183-8.00004-5.
[130]
L Bokobza. Spectroscopic Techniques for the Characterization of Polymer Nanocomposites: A Review. Polymers 2018, 10 (1). https://doi.org/10.3390/polym10010007.
[131]
G. Consolati, D. Nichetti, F Quasso. Probing the Free Volume in Polymers by Means of Positron Annihilation Lifetime Spectroscopy. Polymers 2023, 15 (14), 3128. https://doi.org/10.3390/polym15143128.
[132]
J. Fan, W. Zhou, Q. Wang, Z. Chu, L. Yang, L. Yang, J. Sun, L. Zhao, J. Xu, Y. Liang, Z Chen. Structure Dependence of Water Vapor Permeation in Polymer Nanocomposite Membranes Investigated by Positron Annihilation Lifetime Spectroscopy. J. Membr. Sci. 2018, 549, 581-587. https://doi.org/10.1016/j.memsci.2017.12.046.
[133]
H.-S. Yang, H.-J. Kim, J. Son, H.-J. Park, B.-J. Lee, T.-S. Hwang. Rice-Husk Flour Filled Polypropylene Composites; Mechanical and Morphological Study. Compos. Struct. 2004, 63 (3-4), 305-312. https://doi.org/10.1016/S0263-8223(03) 00179-X.
[134]
G. Yuvaraj, M. Ramesh, L Rajeshkumar. Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review. Nanomaterials 2023, 13 (11), 1803. https://doi.org/10.3390/nano13111803.
[135]
A. K. Mishra, T. Kuila, N. H. Kim, J. H. Lee. Effect of Peptizer on the Properties of Nafion-Laponite Clay Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cells. J. Membr. Sci. 2012, 389, 316-323. https://doi.org/10.1016/j.memsci.2011.10.043.
[136]
S. Erten-Ela, S. Cogal, G. C. Cogal, A. U. Oksuz. Highly Conductive Polymer Materials Based Multi-Walled Carbon Nanotubes as Counter Electrodes for Dye-Sensitized Solar Cells. Fuller. Nanotub. Carbon Nanostructures 2016, 24 (6), 380-384. https://doi.org/10.1080/1536383X.2016.1165669.
[137]
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M Winter. Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries. Nat. Energy 2018, 3 (4), 267-278. https://doi.org/10.1038/s41560-018-0107-2.
[138]
M. Li, J. Lu, Z. Chen, K Amine. 30 Years of Lithium‐Ion Batteries. Adv. Mater. 2018, 30 (33), 1800561. https://doi.org/10.1002/adma.201800561.
[139]
Z. S. Iro, C. Subramani, S. S. Dash. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11 (12), 10628-10643. https://doi.org/10.20964/2016.12.50.
[140]
A. W. Lang, J. F. Ponder, A. M. Österholm, N. J. Kennard, R. H. Bulloch, J. R. Reynolds, Flexible. Aqueous-Electrolyte Supercapacitors Based on Water-Processable Dioxythiophene Polymer/Carbon Nanotube Textile Electrodes. J. Mater. Chem. A 2017, 5 (45), 23887-23897. https://doi.org/10.1039/C7TA07932J.
[141]
S. Brutti, R. Scipioni, M. A. Navarra, S. Panero, V. Allodi, M. Giarola, G Mariotto. SnO 2 - Nafion® Nanocomposite Polymer Electrolytes for Fuel Cell Applications. Int. J. Nanotechnol. 2014, 11 (9/10/11), 882. https://doi.org/10.1504/IJNT.2014.063796.
[142]
G. Sivasubramanian, K. Hariharasubramanian, P. Deivanayagam, J Ramaswamy. High-Performance SPEEK/SWCNT/Fly Ash Polymer Electrolyte Nanocomposite Membranes for Fuel Cell Applications. Polym. J. 2017, 49 (10), 703-709. https://doi.org/10.1038/pj.2017.38.
[143]
V. Vijayakumar, S. Y. Nam. Recent Advancements in Applications of Alkaline Anion Exchange Membranes for Polymer Electrolyte Fuel Cells. J. Ind. Eng. Chem. 2019, 70, 70-86. https://doi.org/10.1016/j.jiec.2018.10.026.
[144]
R. M. Nauman Javed, A. Al-Othman, M. Tawalbeh, A. G. Olabi. Recent Developments in Graphene and Graphene Oxide Materials for Polymer Electrolyte Membrane Fuel Cells Applications. Renew. Sustain. Energy Rev. 2022, 168, 112836. https://doi.org/10.1016/j.rser.2022.112836.
[145]
R. Taherian, A Kausar. Polymer/Fullerene Nanocomposites for Fuel Cells. In Polymer/Fullerene Nanocomposites; Elsevier, 2023; pp 175-195. https://doi.org/10.1016/B978-0-323-99515-3.00014-6.
[146]
S. X. Drakopoulos, J. Wu, S. M. Maguire, S. Srinivasan, K. Randazzo, E. C. Davidson, R. D. Priestley. Polymer Nanocomposites: Interfacial Properties and Capacitive Energy Storage. Prog. Polym. Sci. 2024, 156, 101870. https://doi.org/10.1016/j.progpolymsci.2024.101870.
[147]
S. T. Gobena, A. D. Woldeyonnes. A Review of Synthesis Methods, and Characterization Techniques of Polymer Nanocomposites for Diverse Applications. Discov. Mater. 2024, 4 (1), 52. https://doi.org/10.1007/s43939-024-00119-0.
[148]
M. Zafar, S. Muhammad Imran, I. Iqbal, M. Azeem, S. Chaudhary, S. Ahmad, W. Y. Kim. Graphene-Based Polymer Nanocomposites for Energy Applications: Recent Advancements and Future Prospects. Results Phys. 2024, 60, 107655. https://doi.org/10.1016/j.rinp.2024.107655.
[149]
J.-W. Li, C.-C. Cheng, C.-W. Chiu. Advances in Multifunctional Polymer-Based Nanocomposites. Polymers 2024, 16 (23), 3440. https://doi.org/10.3390/polym16233440.
[150]
X. Li, B. Liu, J. Wang, S. Li, X. Zhen, J. Zhi, J. Zou, B. Li, Z. Shen, X. Zhang, S. Zhang, C.-W. Nan. High-Temperature Capacitive Energy Storage in Polymer Nanocomposites through Nanoconfinement. Nat. Commun. 2024, 15 (1), 6655. https://doi.org/10.1038/s41467-024-51052-y.
[151]
F. Zhao, J. Zhang, H. Tian, C. Lv, H. Ma, Y. Li, X. Chen, J Shao. High Energy Storage Performance of Triple-Layered Nanocomposites with Aligned Conductive Nanofillers over a Broad Electric Field Range. Energy Storage Mater. 2023, 63, 103013. https://doi.org/10.1016/j.ensm.2023.103013.
[152]
P. Ge, L. Li, M. Jiang, G. Wang, F. Wen, X Gao. A Polymer Nanocomposite for High-Temperature Energy Storage with Thermal Stability. Cell Rep. Phys. Sci. 2025, 6 (1), 102361. https://doi.org/10.1016/j.xcrp.2024.102361.
[153]
M. R. Berber, T. Fujigaya, N Nakashima. A Potential Polymer Formulation of a Durable Carbon-Black Catalyst with a Significant Fuel Cell Performance over a Wide Operating Temperature Range. Mater. Today Energy 2018, 10, 161-168. https://doi.org/10.1016/j.mtener.2018.08.016.
[154]
M. A. Haque, A. B. Sulong, L. K. Shyuan, E. H. Majlan, T. Husaini, R. E. Rosli. Synthesis of Polymer/MWCNT Nanocomposite Catalyst Supporting Materials for High-Temperature PEM Fuel Cells. Int. J. Hydrog. Energy 2021, 46 (5), 4339-4353. https://doi.org/10.1016/j.ijhydene.2020.10. 200.
[155]
G. Wang, J. Li, L. Zhai, X. Li, H. He, H. Guo, H. Li, C. Zhao, L. Wu, H Li. Polyoxometalate-Polymer Nanocomposites with Multiplex Proton Transport Channels for High-Performance Proton Exchange Membranes. Compos. Sci. Technol. 2023, 232, 109842. https://doi.org/10.1016/j.compscitech.2022. 109842.
[156]
S. Hu, T. Wei, Q. Li, X. Gao, N. Zhang, Y. Zhao, Q Che. Electrospun Sulfonated Poly(Ether Ether Ketone) and Chitosan/Poly(Vinyl Alcohol) Bifunctional Nanofibers to Accelerate Proton Conduction at Subzero Temperature. ACS Appl. Mater. Interfaces 2024, 16 (45), 62222-62234. https://doi.org/10.1021/acsami.4c15402.
[157]
M. R. Berber, N Nakashima. Tailoring Different Molecular Weight Phenylene-Polybenzimidazole Membranes with Remarkable Oxidative Stability and Conductive Properties for High-Temperature Polymer Electrolyte Fuel Cells. ACS Appl. Mater. Interfaces 2019, 11 (49), 46269-46277. https://doi.org/10.1021/acsami.9b18314.
[158]
J. Yang, Y. Lu, J. Geng, S. Xue, Y. Zhang, J. Teng, M. Zhu, X. Bai, S Liu. Polyoxometalate-Based Ionic-Liquid-Functionalized Sulfonated Poly(Ether Ether Ketone) Composite Membranes with High Proton Conductivity over a Wide Operating Temperature Range. ACS Appl. Polym. Mater. 2025, 7 (4), 2541-2553. https://doi.org/10.1021/acsapm.4c03799.
[159]
Harilal, Shukla, A., Ghosh, P., C., Jana, T.. Pyridine-Bridged Polybenzimidazole for Use in High-Temperature PEM Fuel Cells. ACS Appl. Energy Mater. 2021, 4 (2), 1644-1656. https://doi.org/10.1021/acsaem.0c02821.
[160]
N. Seselj, D. Aili, S. Celenk, L. N. Cleemann, H. A. Hjuler, J. O. Jensen, K. Azizi, Q Li. Performance Degradation and Mitigation of High Temperature Polybenzimidazole-Based Polymer Electrolyte Membrane Fuel Cells. Chem. Soc. Rev. 2023, 52 (12), 4046-4070. https://doi.org/10.1039/D3CS00072A.
[161]
W. Fan, P. Zhao, K. Feng, Z. Wang, L. Tian, J Xu. Mechanism Study of Functionalized Graphene Oxide on Proton Transport of Polymer Electrolyte Membrane. Int. J. Hydrog. Energy 2025, 111, 22-32. https://doi.org/10.1016/j.ijhydene.2025.02.289.
[162]
Y. Zhang, A. Zhang, Y. Fan, Y. Li, Z. Xing, S Wang. Multiple Hydrogen Bond Systems Boosting High Proton Conductivity of the Comb-Shaped Sulfonated Poly(Ether Ether Ketone) Proton Exchange Membranes. ACS Appl. Polym. Mater. 2024, 6 (14), 8535-8547. https://doi.org/10.1021/acsapm.4c01504.
[163]
X. Sun, H. Yu, J. Guan, B. Zhang, J. Zheng, S. Li, S Zhang. The Impact of Imidazolium with Steric Hindrance on the Dissociation of Phosphoric Acid and the Performance of High-Temperature Proton Exchange Membranes. J. Mater. Chem. A 2024, 12 (36), 24499-24507. https://doi.org/10.1039/D4TA03948C.
[164]
X. Guan, W. Wu, S. Zhang, G. Ma, X. Zhou, C. Li, D. Yu, Y. Luo, S Wang. High Hydrogen-Bond Density Polymeric Ionic Liquid Composited High Temperature Proton Exchange Membrane with Exceptional Long-Term Fuel Cell Performance. J. Membr. Sci. 2025, 717, 123523. https://doi.org/10.1016/j.memsci.2024.123523.
[165]
H. K. Srour, S. M. Ali, N. F. Atta, A Galal. Fuel Cell-Based Polymers and Two-Dimensional Nanocomposites: Synthesis, Challenges, and Prospects. In Polymers and Two-Dimensional Nanocomposites; Elsevier, 2025; pp 387-412. https://doi.org/10.1016/B978-0-443-14131-7.00014-6.
[166]
S. Gorgieva, A. Osmić, S. Hribernik, M. Božič, J. Svete, V. Hacker, S. Wolf, B Genorio. Efficient Chitosan/Nitrogen-Doped Reduced Graphene Oxide Composite Membranes for Direct Alkaline Ethanol Fuel Cells. Int. J. Mol. Sci. 2021, 22 (4), 1740. https://doi.org/10.3390/ijms22041740.
[167]
H.-P. Zhang, N. S. Gandhi, Y. Gu, Y. Zhang, Y Tang. Chitosan/Graphene Complex Membrane for Polymer Electrolyte Membrane Fuel Cell: A Molecular Dynamics Simulation Study. Int. J. Hydrog. Energy 2020, 45 (48), 25960-25969. https://doi.org/10.1016/j.ijhydene.2020.03.124.
[168]
Y. A. Sihombing, Susilawati, S. U. Rahayu, M. D. Situmeang. Effect of Reduced Graphene Oxide (rGO) in Chitosan/Pahae Natural Zeolite-Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell (DMFC) Applications. Mater. Sci. Energy Technol. 2023, 6, 252-259. https://doi.org/10.1016/j.mset.2023.01.002.
[169]
A. Pokprasert, S Chirachanchai. Proton Conductivity and Dimensional Stability of Proton Exchange Membrane: A Dilemma Solved by Chitosan Aerogel Framework. Electrochimica Acta 2023, 441, 141764. https://doi.org/10.1016/j.electacta.2022.141764.
[170]
M. Tamer, S. Akyalçın, L Akyalçın. Recent Progresses and Challenges to Determine Properties of Sulfonated Polyether Ether Ketone Based Electrolytes for Direct Methanol Fuel Cell Applications. ChemElectroChem 2024, 11 (23), e202400345. https://doi.org/10.1002/celc.202400345.
[171]
M. Rehman Asghar, K. Divya, H. Su, Q Xu. Advancement of PVDF and Its Copolymer-Based Proton Exchange Membranes for Direct Methanol Fuel Cells: A Review. Eur. Polym. J. 2024, 213, 113110. https://doi.org/10.1016/j.eurpolymj.2024.113110.
[172]
S. H. Osman, S. K. Kamarudin, N. Shaari, I. H. Hanapi, O. S. J. Elham, M. A. Aminudin. Review on Direct Methanol Fuel Cells: Bridging the Gap between Theory and Application for Sustainable Energy Solutions. Energy Fuels 2025, 39 (12), 5651-5671. https://doi.org/10.1021/acs.energyfuels.4c05357.
[173]
R. Yadav, A. Subhash, N. Chemmenchery, B Kandasubramanian. Graphene and Graphene Oxide for Fuel Cell Technology. Ind. Eng. Chem. Res. 2018, 57 (29), 9333-9350. https://doi.org/10.1021/acs.iecr.8b02326.
[174]
M. Taufiq Musa, N. Shaari, S. K. Kamarudin. Carbon Nanotube, Graphene Oxide and Montmorillonite as Conductive Fillers in Polymer Electrolyte Membrane for Fuel Cell: An Overview. Int. J. Energy Res. 2021, 45 (2), 1309-1346. https://doi.org/10.1002/er.5874.
[175]
M. S. Alias, S. K. Kamarudin, A. M. Zainoodin, M. S. Masdar. Active Direct Methanol Fuel Cell: An Overview. Int. J. Hydrog. Energy 2020, 45 (38), 19620-19641. https://doi.org/10.1016/j.ijhydene.2020.04.202.
[176]
X. Li, A Faghri. Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing with High Concentration Methanol Solutions. J. Power Sources 2013, 226, 223-240. https://doi.org/10.1016/j.jpowsour.2012.10.061.
[177]
A. Takara, E., C. F. Jofre, S. V. Piguillem, M. L. Scala‐Benuzzi, J. Raba, F. A. Bertolino, S. V. Pereira, G. A. Messina. Polymer Nanocomposites Based on Graphene and Graphene Oxide. In Chemical Physics of Polymer Nanocomposites; Myasoedova V. V., Thomas S., Maria H. J.. Wiley, 2024; pp 343-372. https://doi.org/10.1002/9783527837021.ch12.
[178]
S. Noor, S. Sajjad, S. A. K. Leghari, S. Shaheen, A Iqbal. ZnO/TiO2 Nanocomposite Photoanode as an Effective UV-Vis Responsive Dye Sensitized Solar Cell. Mater. Res. Express 2018, 5 (9), 095905. https://doi.org/10.1088/2053-1591/aad8ee.
[179]
S. Mekhilef, R. Saidur, A Safari. A Review on Solar Energy Use in Industries. Renew. Sustain. Energy Rev. 2011, 15 (4), 1777-1790. https://doi.org/10.1016/j.rser.2010.12.018.
[180]
P. A. Owusu, S Asumadu-Sarkodie. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3 (1), 1167990. https://doi.org/10.1080/23311916.2016.1167990.
[181]
U. Mehmood, S. Rahman, K. Harrabi, I. A. Hussein, B. V. S. Reddy. Recent Advances in Dye Sensitized Solar Cells. Adv. Mater. Sci. Eng. 2014, 2014, 1-12. https://doi.org/10.1155/2014/974782.
[182]
K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, H Fayaz. A Review on Global Solar Energy Policy. Renew. Sustain. Energy Rev. 2011, 15 (4), 2149-2163. https://doi.org/10.1016/j.rser.2011.01.007.
[183]
C.-D. Yue, G.-R. Huang. An Evaluation of Domestic Solar Energy Potential in Taiwan Incorporating Land Use Analysis. Energy Policy 2011, 39 (12), 7988-8002. https://doi.org/10.1016/j.enpol.2011.09.054.
[184]
B. Boro, B. Gogoi, B. M. Rajbongshi, A Ramchiary. Nano-Structured TiO2/ZnO Nanocomposite for Dye-Sensitized Solar Cells Application: A Review. Renew. Sustain. Energy Rev. 2018, 81, 2264-2270. https://doi.org/10.1016/j.rser. 2017.06.035.
[185]
N. Ullah, S. M. Shah, R. Ansir, S. Erten-Ela, S. Mushtaq, S Zafar. Pyrocatechol Violet Sensitized Cadmium and Barium Doped TiO2/ZnO Nanostructures: As Photoanode in DSSC. Mater. Sci. Semicond. Process. 2021, 135, 106119. https://doi.org/10.1016/j.mssp.2021.106119.
[186]
H. B. Khalil, S. J. H. Zaidi. Energy Crisis and Potential of Solar Energy in Pakistan. Renew. Sustain. Energy Rev. 2014, 31, 194-201. https://doi.org/10.1016/j.rser.2013.11.023.
[187]
O’Regan, B., Grätzel, M.. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737-740. https://doi.org/10.1038/353737a0.
[188]
M. Dhonde, K. Sahu, M. Das, A. Yadav, P. Ghosh, V. V. S. Murty. Review—Recent Advancements in Dye-Sensitized Solar Cells; From Photoelectrode to Counter Electrode. J. Electrochem. Soc. 2022, 169 (6), 066507. https://doi.org/10.1149/1945-7111/ac741f.
[189]
F Sauvage. A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Adv. Chem. 2014, 2014, 1-23. https://doi.org/10.1155/2014/939525.
[190]
K. S. Lee, Y. Lee, J. Y. Lee, J. Ahn, J. H. Park. Flexible and Platinum‐Free Dye‐Sensitized Solar Cells with Conducting‐Polymer‐Coated Graphene Counter Electrodes. ChemSusChem 2012, 5 (2), 379-382. https://doi.org/10.1002/cssc.201100430.
[191]
Z. Ahmad, E. Farooq, R. Nazar, U. Mehmood, I Fareed. Development of Multi-Walled Carbon Nanotube/Polythiophene (MWCNT/PTh) Nanocomposites for Platinum-Free Dye-Sensitized Solar Cells (DSSCs). Sol. Energy 2022, 245, 153-157. https://doi.org/10.1016/j.solener.2022.09.010.
[192]
A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M Grätzel. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629-634. https://doi.org/10.1126/science.1209688.
[193]
S. Ito, S. M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M Grätzel. High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness. Adv. Mater. 2006, 18 (9), 1202-1205. https://doi.org/10.1002/adma.200502540.
[194]
S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M Grätzel. High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye. Chem. Commun. 2008, No. 41, 5194. https://doi.org/10.1039/b809093a.
[195]
S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 1997, 101 (14), 2576-2582. https://doi.org/10.1021/jp962377q.
[196]
D. Zhao, C.-F. Yang. Recent Advances in the TiO 2 /CdS Nanocomposite Used for Photocatalytic Hydrogen Production and Quantum-Dot-Sensitized Solar Cells. Renew. Sustain. Energy Rev. 2016, 54, 1048-1059. https://doi.org/10.1016/j.rser.2015.10.100.
[197]
X. Chen, S. S. Mao, Dioxide Nanomaterials: Synthesis Titanium, Properties, and Applications Modifications. Chem. Rev. 2007, 107 (7), 2891-2959. https://doi.org/10.1021/cr0500535.
[198]
T. L. Thompson, J. T. Yates. Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes. Chem. Rev. 2006, 106 (10), 4428-4453. https://doi.org/10.1021/cr050172k.
[199]
D. Chen, H. Zhang, S. Hu, J Li. Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO-TiO2 Nanocomposites. J. Phys. Chem. C 2008, 112 (1), 117-122. https://doi.org/10.1021/jp077236a.
[200]
J. Wu, H. Li, Y. Liu, C Xie. Photoconductivity and Trap-Related Decay in Porous TiO2/ZnO Nanocomposites. J. Appl. Phys. 2011, 110 (12), 123513. https://doi.org/10.1063/1.3662954.
[201]
H. Tada, M. Fujishima, H Kobayashi. Photodeposition of Metal Sulfide Quantum Dots on Titanium(Iv) Dioxide and the Applications to Solar Energy Conversion. Chem. Soc. Rev. 2011, 40 (7), 4232. https://doi.org/10.1039/c0cs00211a.
[202]
El Ruby Mohamed A., S Rohani, TiO Modified2 Nanotube Arrays (TNTAs): Progressive Strategies towards Visible Light Responsive Photoanode, a Review. Energy Environ. Sci. 2011, 4 (4), 1065. https://doi.org/10.1039/c0ee00488j.
[203]
S. M. Gupta, M Tripathi. A Review of TiO2 Nanoparticles. Chin. Sci. Bull. 2011, 56 (16), 1639-1657. https://doi.org/
[204]
H. Ge, F. Xu, B. Cheng, J. Yu, W Ho. S‐Scheme Heterojunction TiO2 /CdS Nanocomposite Nanofiber as H2 ‐Production Photocatalyst. ChemCatChem 2019, 11 (24), 6301-6309. https://doi.org/10.1002/cctc.201901486.
[205]
R. Peng, D. Zhao, J. Baltrusaitis, C.-M. Wu, R. T. Koodali. Visible Light Driven Photocatalytic Evolution of Hydrogen from Water over CdS Encapsulated MCM-48 Materials. RSC Adv. 2012, 2 (13), 5754. https://doi.org/10.1039/c2ra20714a.
[206]
N. Ullah, S. M. Shah, Ş. Erten-Ela, R. Ansir, H. Hussain, S. Qamar, M Usman, Dithizone. Carminic Acid and Pyrocatechol Violet Dyes Sensitized Metal (Ho, Ba& Cd) Doped TiO2/CdS Nanocomposite as a Photoanode in Hybrid Heterojunction Solar Cell. Ceram. Int. 2022, 48 (21), 31478-31490. https://doi.org/10.1016/j.ceramint.2022.07.067.
[207]
S. Bhattacharyya, L. Donato, S. Chakraborty, V. Calabrò, M. Davoli, C Algieri. Synergistic Efficiency of TiO2-GO Nanocomposite Membranes in Dye Degradation for Sustainable Water Pollution Remedy. Earth Syst. Environ. 2024. https://doi.org/10.1007/s41748-024-00527-5.
[208]
A. C. Nkele, A. Alshoaibi, F. D. Matthew, C. Awada, S. Islam, F. I. Ezema. Synthesis and Characterization of Sol-Gel Processed GO/NiO Hybrid Composites for Gas Sensing and Photocatalytic Applications. J. Sol-Gel Sci. Technol. 2025. https://doi.org/10.1007/s10971-025-06734-4.
[209]
N. T. Padmanabhan, N. Thomas, J. Louis, D. T. Mathew, P. Ganguly, H. John, S. C. Pillai. Graphene Coupled TiO2 Photocatalysts for Environmental Applications: A Review. Chemosphere 2021, 271, 129506. https://doi.org/10.1016/j.chemosphere.2020.129506.
[210]
S. K. Sumantrao, P.; C Kariyajjanavar, C. Vidyasagar. A. H. Shridhar, S. C. Ghagane, S. S. Chigari, G. Bonageri, M. Z. Ansari, A. S. Alsubaie. Sunlight-Driven GO/ZnO Nanocomposite for Photocatalytic Degradation of Chlorpyrifos Insecticide and Its Biological Activities. J. Environ. Chem. Eng. 2025, 13 (2), 115437. https://doi.org/10.1016/j.jece.2025.115437.
[211]
S. Tahir, M. Zahid, M. A. Hanif, I. A. Bhatti, S. A. R. Naqvi, H. N. Bhatti, A. Jilani, S. A. Alshareef, M. El-Sharnouby, I Shahid. The Synergistic Effect of G-C3N4/GO/CuFe2O4 for Efficient Sunlight-Driven Photocatalytic Degradation of Methylene Blue. Int. J. Environ. Sci. Technol. 2025, 22 (6), 4829-4846. https://doi.org/10.1007/s13762-024-05929-6.
[212]
J. Wang, Z. Yu, T. Zhao, N. He, Q. Tan, Y. Song, Y Chen. The Degradation of Sulfamethoxazole Using a Heterojunction Photocatalytic Membrane Composed of Z-Scheme LaFeO3/Ag3PO4@GO: Assessment of Activity and Degradation Mechanisms. Colloids Surf. Physicochem. Eng. Asp. 2025, 705, 135733. https://doi.org/10.1016/j.colsurfa. 2024.135733.
[213]
V. K. Thorsmølle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, X. Chi, B. K. Crone, A. P. Ramirez, A. J. Taylor. Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and Charge Transport in Organic Semiconductors. Phys. Rev. Lett. 2009, 102 (1), 017401. https://doi.org/10.1103/PhysRevLett.102.017401.
[214]
F. Sadegh, A. R. Modarresi-Alam, M. Noroozifar, K Kerman. A Facile and Green Synthesis of Superparamagnetic Fe3O4@PANI Nanocomposite with a Core-Shell Structure to Increase of Triplet State Population and Efficiency of the Solar Cells. J. Environ. Chem. Eng. 2021, 9 (1), 104942. https://doi.org/10.1016/j.jece.2020.104942.
[215]
C. Jin, Y. Wang, Y. Wei, R. Nan, Z. Jian, Z. Yang, Q Ding. (CrMnCoNiZn)3O4@PPy Core-Shell Nanocomposite with Excellent Electrochemical Performance as Lithium-Ion Battery Anode. J. Power Sources 2024, 613, 234926. https://doi.org/10.1016/j.jpowsour.2024.234926.
[216]
Z. Ye, Y. Zhang, L. Zhao, Y Zeng. Mixed Polymerization Approach to GO-Derived Carbon Foil-Supported Porous SiO2/C Random Nanocomposite Films for Li-Ion Battery Anodes with Extraordinarily Enhanced Capacities by Cycle-Dependent Size-Reduction Effect. J. Alloys Compd. 2023, 964, 171228. https://doi.org/10.1016/j.jallcom.2023.171228.
[217]
J. Stejskal, I. Sapurina, M Trchová. Polyaniline Nanostructures and the Role of Aniline Oligomers in Their Formation. Prog. Polym. Sci. 2010, 35 (12), 1420-1481. https://doi.org/10.1016/j.progpolymsci.2010.07.006.
[218]
A. Khadir, M. Negarestani, H Ghiasinejad. Low-Cost Sisal Fibers/Polypyrrole/Polyaniline Biosorbent for Sequestration of Reactive Orange 5 from Aqueous Solutions. J. Environ. Chem. Eng. 2020, 8 (4), 103956. https://doi.org/10.1016/j.jece.2020.103956.
[219]
G. Ntanovasilis, I. Zaverdas, T. Ahmed, F. Markoulidis, C Lekakou. Polymer Blends and Polymer Nanocomposites for Photovoltaic (PV) Cells and an Investigation of the Material Deposition Techniques in PV Cell Fabrication. J. Compos. Sci. 2021, 5 (10), 263. https://doi.org/10.3390/jcs5100263.
[220]
A. M. Díez-Pascual, J. A. Luceño Sánchez, R. Peña Capilla, P García Díaz. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10 (2), 217. https://doi.org/10.3390/polym10020217.
[221]
B. R. Saunders. Hybrid Polymer/Nanoparticle Solar Cells: Preparation, Principles and Challenges. J. Colloid Interface Sci. 2012, 369 (1), 1-15. https://doi.org/10.1016/j.jcis.2011.12. 016.
[222]
T. X. Nguyen, C.-C. Tsai, J. Patra, O. Clemens, J.-K. Chang, J.-M. Ting. Co-Free High Entropy Spinel Oxide Anode with Controlled Morphology and Crystallinity for Outstanding Charge/Discharge Performance in Lithium-Ion Batteries. Chem. Eng. J. 2022, 430, 132658. https://doi.org/10.1016/j.cej.2021.132658.
[223]
C. Jin, Y. Wei, R. Nan, Z. Jian, Q Ding. C@SnS 2 Core-Shell 0D/2D Nanocomposite with Excellent Electrochemical Performance as Lithium-Ion Battery Anode. Electrochimica Acta 2024, 476, 143747. https://doi.org/10.1016/j.electacta. 2023.143747.
[224]
M. Winter, B. Barnett, K Xu. Before Li Ion Batteries. Chem. Rev. 2018, 118 (23), 11433-11456. https://doi.org/10.1021/acs.chemrev.8b00422.
[225]
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P Anderson. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575 (7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5.
[226]
C. M. Costa, L. C. Rodrigues, V. Sencadas, M. M. Silva, J. G. Rocha, S Lanceros-Méndez. Effect of Degree of Porosity on the Properties of Poly(Vinylidene Fluoride-Trifluorethylene) for Li-Ion Battery Separators. J. Membr. Sci. 2012, 407-408, 193-201. https://doi.org/10.1016/j.memsci.2012.03.044.
[227]
M. Ghahramani, M. Javanbakht, S. Jamalpour, S Hamidi. Novel Single-Ion Conducting Gel Polymer Electrolyte with Honeycomb-Like Morphology Prepared Using Brush Copolymer for Lithium-Ion Battery Application. J. Electrochem. Soc. 2023, 170 (4), 040502. https://doi.org/10.1149/1945-7111/acc487.
[228]
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. De Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B Breitung. High Entropy Oxides for Reversible Energy Storage. Nat. Commun. 2018, 9 (1), 3400. https://doi.org/10.1038/s41467-018-05774-5.
[229]
H. Yang, X. Yu, H. Meng, P. Dou, D. Ma, X Xu. Nanoengineered Three-Dimensional Hybrid Fe2O3@PPy Nanotube Arrays with Enhanced Electrochemical Performances as Lithium-Ion Anodes. J. Mater. Sci. 2015, 50 (16), 5504-5513. https://doi.org/10.1007/s10853-015-9096-8.
[230]
L. Hou, R. Bao, D. K. Denis, X. Sun, J. Zhang, F. U. Zaman, C Yuan. Synthesis of Ultralong ZnFe2O4@polypyrrole Nanowires with Enhanced Electrochemical Li-Storage Behaviors for Lithium-Ion Batteries. Electrochimica Acta 2019, 306, 198-208. https://doi.org/10.1016/j.electacta.2019. 03.121.
[231]
Y. Sui, C. Liu, P. Zou, H. Zhan, Y. Cui, C. Yang, G Cao. Polypyrrole Coated δ-MnO2 Nanosheet Arrays as a Highly Stable Lithium-Ion-Storage Anode. Dalton Trans. 2020, 49 (23), 7903-7913. https://doi.org/10.1039/D0DT01658F.
[232]
L. Sun, Y. Liu, R. Shao, J. Wu, R. Jiang, Z Jin. Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries. Energy Storage Mater. 2022, 46, 482-502. https://doi.org/10.1016/j.ensm.2022.01.042.
[233]
X. Ma, Z. Wei, H. Han, X. Wang, K. Cui, L Yang. Tunable Construction of Multi-Shell Hollow SiO2 Microspheres with Hierarchically Porous Structure as High-Performance Anodes for Lithium-Ion Batteries. Chem. Eng. J. 2017, 323, 252-259. https://doi.org/10.1016/j.cej.2017.04.108.
[234]
K. Chen, Y. Tan, K. Wang, J. Niu, Z. Y. Chen. High Specific Capacity of Carbon Coating Lemon-like SiO2 Hollow Spheres for Lithium-Ion Batteries. Electrochimica Acta 2022, 401, 139497. https://doi.org/10.1016/j.electacta.2021.139497.
[235]
K. Wang, X. Zhu, Y. Hu, S. Qiu, L. Gu, C. Wang, P Zuo. Stable Anchoring and Uniform Distribution of SiO2 Nanotubes on Reduced Graphene Oxide through Electrostatic Self-Assembly for Ultra-High Lithium Storage Performance. Carbon 2020, 167, 835-842. https://doi.org/10.1016/j.carbon. 2020.05.048.
[236]
X. Liu, Y. Chen, H. Liu, Z.-Q. Liu. SiO2@C Hollow Sphere Anodes for Lithium-Ion Batteries. J. Mater. Sci. Technol. 2017, 33 (3), 239-245. https://doi.org/10.1016/j.jmst.2016. 07.021.
[237]
L. Zhang, X. Gu, C. Yan, S. Zhang, L. Li, Y. Jin, S. Zhao, H. Wang, X Zhao. Titanosilicate Derived SiO2 /TiO2 @C Nanosheets with Highly Distributed TiO2 Nanoparticles in SiO2 Matrix as Robust Lithium Ion Battery Anode. ACS Appl. Mater. Interfaces 2018, 10 (51), 44463-44471. https://doi.org/10.1021/acsami.8b16238.
[238]
C. Nita, J. Fullenwarth, L. Monconduit, J.-M. Le Meins, P. Fioux, J. Parmentier, C Matei Ghimbeu. Eco-Friendly Synthesis of SiO2 Nanoparticles Confined in Hard Carbon: A Promising Material with Unexpected Mechanism for Li-Ion Batteries. Carbon 2019, 143, 598-609. https://doi.org/10.1016/j.carbon.2018.11.069.
[239]
L. Si, K. Yan, C. Li, Y. Huang, X. Pang, X. Yang, D. Sui, Y. Zhang, J. Wang,C Charles Xu. Binder-Free SiO2 Nanotubes/Carbon Nanofibers Mat as Superior Anode for Lithium-Ion Batteries. Electrochimica Acta 2022, 404, 139747. https://doi.org/10.1016/j.electacta.2021.139747.
[240]
Y. Wu, W. Wei, T. Feng, W. Li, X. Wang, T. Wu, X Zhang. Electrospun MXene/Polyimide Nanofiber Composite Separator for Enhancing Thermal Stability and Ion Transport of Lithium-Ion Batteries. Front. Chem. 2025, 13, 1555323. https://doi.org/10.3389/fchem.2025.1555323.
[241]
Z. Qian, Z.-D. Qiu, R.-Q. Wang, M.-T. Wei, A.-M. Fei, Z.-Y. Hu, H. S. H. Mohamed, L.-H. Chen, Y. Li, B.-L. Su. Ionic Liquid-Grafted MXene Composite Polymer Electrolytes for High-Performance Solid-State Batteries. Chem. Eng. J. 2025, 514, 163121. https://doi.org/10.1016/j.cej.2025.163121.
[242]
E. Vessally, R. M. Rzayev, A. A. Niyazova, T. Aggarwal, K. E. Rahimova. Overview of Recent Developments in Carbon-Based Nanocomposites for Supercapacitor Applications. RSC Adv. 2024, 14 (54), 40141-40159. https://doi.org/10.1039/D4RA08446B.
[243]
H. Zhu, R. Xu, T. Wan, W. Yuan, K. Shu, N. Boonprakob, C Zhao. Nanocomposites of Conducting Polymers and 2D Materials for Flexible Supercapacitors. Polymers 2024, 16 (6). https://doi.org/10.3390/polym16060756.
[244]
V. J. Vipu Vinayak, K. Deshmukh, V. R. K. Murthy, S. K. K. Pasha. Conducting Polymer Based Nanocomposites for Supercapacitor Applications: A Review of Recent Advances, Challenges and Future Prospects. J. Energy Storage 2024, 100, 113551. https://doi.org/10.1016/j.est.2024.113551.
[245]
O. I. O., A. S. O., T. A. S., A. I. M., O. O. F., O A. O., Polymer-Based Nanocomposites for Supercapacitor Applications: A Review on Principles, Production and Products. RSC Adv. 2025, 15 (10), 7509-7534. https://doi.org/10.1039/D4RA08601E.
[246]
A Burke. Ultracapacitors: Why, How, and Where Is the Technology. J. Power Sources 2000, 91 (1), 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7.
[247]
B. E. Conway. Electrochemical Supercapacitors; Springer US: Boston, MA, 1999. https://doi.org/10.1007/978-1-4757-3058-6.
[248]
T. A. Smith, J. P. Mars, G. A. Turner. Using Supercapacitors to Improve Battery Performance. In 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No. 02CH37289); IEEE:Cairns, Qld., Australia, 2002; Vol. 1, pp 124-128. https://doi.org/10.1109/PSEC.2002. 1023857.
[249]
Chakraborty, S.; M, A. R.; Mary, N. L. Biocompatible Supercapacitor Electrodes Using Green Synthesised ZnO/Polymer Nanocomposites for Efficient Energy Storage Applications. J. Energy Storage 2020, 28, 101275. https://doi.org/10.1016/j.est.2020.101275.
[250]
S. Palsaniya, H. B. Nemade, A. K. Dasmahapatra. Hierarchical PANI-RGO-ZnO Ternary Nanocomposites for Symmetric Tandem Supercapacitor. J. Phys. Chem. Solids 2021, 154, 110081. https://doi.org/10.1016/j.jpcs.2021. 110081.
[251]
U. Boro, N. Kashyap, V. S. Moholkar. Sonochemical Synthesis of Poly(Lactic Acid) Nanocomposites with ZnO Nanoflowers: Effect of Nanofiller Morphology on Physical Properties. ACS Eng. Au 2022, 2 (1), 46-60. https://doi.org/10.1021/acsengineeringau.1c00018.
[252]
D. G. Goodwin, T. Lai, Y. Lyu, C. Y. Lu, A. Campos, V. Reipa, T. Nguyen, L Sung. The Impacts of Moisture and Ultraviolet Light on the Degradation of Graphene Oxide/Polymer Nanocomposites. NanoImpact 2020, 19, 100249. https://doi.org/10.1016/j.impact.2020.100249.
[253]
M. M. Rahman, M. R. Shawon, M. H. Rahman, I. Alam, M. O. Faruk, M. M. R. Khan, O Okoli. Synthesis of Polyaniline-Graphene Oxide Based Ternary Nanocomposite for Supercapacitor Application. J. Energy Storage 2023, 67, 107615. https://doi.org/10.1016/j.est.2023.107615.
[254]
M. M. Rahman, M. R. Hossen, I. Alam, M. H. Rahman, O. Faruk, M. Nurbas, M. M. Rahman, M. M. R. Khan. Synthesis of Hexagonal Boron Nitride Based PANI/h-BN and PANI-PPy/h-BN Nanocomposites for Efficient Supercapacitors. J. Alloys Compd. 2023, 947, 169471. https://doi.org/10.1016/j.jallcom.2023.169471.
[255]
C. Chi, Y. Li, D. Li, H. Huang, Q. Wang, Y. Yang, B Huang. Flexible Solvent-Free Supercapacitors with High Energy Density Enabled by Electrical-Ionic Hybrid Polymer Nanocomposites. J. Mater. Chem. A 2019, 7 (28), 16748-16760. https://doi.org/10.1039/C9TA04612G.
[256]
P. Mahajan, S. Sardana, A Mahajan. Ternary MXene/PANI/ZnO-Based Composite with a Built-in p-n Heterojunction for High-Performance Supercapacitor Applications. J. Phys. Appl. Phys. 2024, 58 (4), 045501. https://doi.org/10.1088/1361-6463/ad875a.
[257]
P. Singh, A. Singh, R. Saini, Deepika, P. Kulriya, R Kumar. Advancements in Graphene-Based Nanostructured Conducting Polymer Hybrid Composite Electrodes for High-Performance Supercapacitors. J. Power Sources 2025, 630, 236176. https://doi.org/10.1016/j.jpowsour.2025.236176.
[258]
M. Zeeshan, S. Gouadria, F. Alharbi, M. W. Iqbal, M. A. Sunny, H. Hassan, N. A. Ismayilova, H. Alrobei, Alawaideh, M. Yazen., E Umar. Hierarchical Nanostructuring of PCN-222/NiSe2@PANI Composites for Enhanced Electrochemical Performance in Supercapattery and Hydrogen Evolution Reaction Applications. Appl. Phys. A 2025, 131 (3), 201. https://doi.org/10.1007/s00339-025-08308-1.
[259]
D. M. Saju, R. Sapna, U. Deka, K Hareesh. MXene Material for Supercapacitor Applications: A Comprehensive Review on Properties, Synthesis and Machine Learning for Supercapacitance Performance Prediction. J. Power Sources 2025, 647, 237302. https://doi.org/10.1016/j.jpowsour.2025. 237302.
[260]
M. S. Ali, M. S. Ali, S. Bhandari, S. Saini, S. Karmakar, D Chattopadhyay. Recent Progress on MXene-Polymer Nanocomposites and Their Applications. Sustain. Mater. Technol. 2025, 45, e01563. https://doi.org/10.1016/j.susmat. 2025.e01563.
[261]
S. Kumar, S. M. Zain Mehdi, M. Taunk, S. Kumar, A. Aherwar, S. Singh, T Singh. Synergistic Effects of Polymer Integration on the Properties, Stability, and Applications of MXenes. J. Mater. Chem. A 2025, 13 (16), 11050-11113. https://doi.org/10.1039/D4TA08094G.
[262]
L. Zhou, J. Li, C Xing. MXene-Polymer Nanocomposites for Precise Structural and Functional Applications. Chem. Eng. J. 2025, 506, 159868. https://doi.org/10.1016/j.cej.2025.159868.
[263]
M. Majumder, R. B. Choudhary, A. K. Thakur, C. S. Rout, G Gupta. Rare Earth Metal Oxide (RE2O3; RE = Nd, Gd, and Yb) Incorporated Polyindole Composites: Gravimetric and Volumetric Capacitive Performance for Supercapacitor Applications. New J. Chem. 2018, 42 (7), 5295-5308. https://doi.org/10.1039/C8NJ00221E.
[264]
M. Rafeeq, S. I. A. Shah, K. Jabbour, S. Ahmad, M. Abdullah, R. A. Alshgari, S. Mohammad, M. F. Ehsan, G. Yasmeen, M. N. Ashiq. Facile Fabrication of Nd2O3/Sm2O3 Nanocomposite as a Robust Electrode Material for Energy Storage Applications. J. Energy Storage 2024, 88, 111580. https://doi.org/10.1016/j.est.2024.111580.
[265]
S. Tu, L. Qiu, C. Liu, F. Zeng, Y.-Y. Yuan, M. N. Hedhili, V. Musteata, Y. Ma, K. Liang, N. Jiang, H. N. Alshareef, X Zhang. Suppressing Dielectric Loss in MXene/Polymer Nanocomposites through Interfacial Interactions. ACS Nano 2024, 18 (14), 10196-10205. https://doi.org/10.1021/acsnano. 4c00475.
[266]
G. A. Al-Muntasheri, L. Sierra, F. Garzon, J. D. Lynn, G Izquierdo. Water Shut-off with Polymer Gels in A High Temperature Horizontal Gas Well: A Success Story; 2010; p SPE-129848-MS. https://doi.org/10.2118/129848-MS.
[267]
K. S. El-Karsani, G. A. Al-Muntasheri, I. A. Hussein. Polymer Systems for Water Shutoff and Profile Modification: A Review Over the Last Decade. SPE J. 2013, 19 (01), 135-149. https://doi.org/10.2118/163100-PA.
[268]
A. Fathima, A. Almohsin, F. M. Michael, M. Bataweel, E. H. Alsharaeh. Polymer Nanocomposites for Water Shutoff Application- A Review. Mater. Res. Express 2018, 6 (3), 032001. https://doi.org/10.1088/2053-1591/aaf36c.
[269]
Y. Liu, C. Dai, K. Wang, C. Zou, M. Gao, Y. Fang, M. Zhao, Y. Wu, Q You. Study on a Novel Cross-Linked Polymer Gel Strengthened with Silica Nanoparticles. Energy Fuels 2017, 31 (9), 9152-9161. https://doi.org/10.1021/acs.energyfuels. 7b01432.
[270]
Y. Liu, H.-J. Zhang, D.-Y. Zhu, Z.-Y. Wang, J.-H. Qin, Q. Zhao, Y.-H. Zhao, J.-R. Hou. Effect of Nano TiO2 and SiO2 on Gelation Performance of HPAM/PEI Gels for High-Temperature Reservoir Conformance Improvement. Pet. Sci. 2023, 20 (6), 3819-3829. https://doi.org/10.1016/j.petsci.2023. 07.005.
[271]
R. D. Sydansk. A New Conformance-Improvement-Treatment Chromium(Lll) Gel Technology; 1988; p SPE-17329-MS. https://doi.org/10.2118/17329-MS.
[272]
A. Ilavya, P. Rathwa, S. Paine, M. Makwana, A Bera. Gelation Studies of Nanographene Oxide-Augmented Nanocomposite Polymer Gel Systems for Water Shutoff Technique in Oil Reservoirs. J. Mol. Liq. 2025, 421, 126928. https://doi.org/10.1016/j.molliq.2025.126928.
[273]
Reena, Kumar, A., Srivastava, V., Mahto, V., Choubey, A., K. Polyvinylpyrrolidone-Resorcinol-Formaldehyde Hydrogel System Reinforced with Bio-Synthesized Zinc-Oxide for Water Shut-off in Heterogeneous Reservoir: An Experimental Investigation. Oil Gas Sci Technol - Rev IFP Energ. Nouv. 2021, 76. https://doi.org/10.2516/ogst/2021043.
[274]
S. Pérez-Robles, F. B. Cortés, C. A. Franco. Effect of the Nanoparticles in the Stability of Hydrolyzed Polyacrylamide/Resorcinol/Formaldehyde Gel Systems for Water Shut-off/Conformance Control Applications. J. Appl. Polym. Sci. 2019, 136 (21), 47568. https://doi.org/10.1002/app.47568.
[275]
S. Pérez-Robles, C. A. Matute, J. R. Lara, S. H. Lopera, F. B. Cortés, C. A. Franco. Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations. Nanomaterials 2020, 10 (1). https://doi.org/10.3390/nano10010074.
[276]
J. Aalaie, E. Vasheghani-Farahani, A. Rahmatpour, M. A. Semsarzadeh. Effect of Montmorillonite on Gelation and Swelling Behavior of Sulfonated Polyacrylamide Nanocomposite Hydrogels in Electrolyte Solutions. Eur. Polym. J. 2008, 44 (7), 2024-2031. https://doi.org/10.1016/j.eurpolymj.2008.04.031.
[277]
L. Ma, S. Wang, Y. Long, C. Zhu, H. Yang, T. Yang, X. Liu, X. Li, B. Bai, W Kang. Novel Environmentally Benign Hydrogel: Nano-Silica Hybrid Hydrolyzed Polyacrylamide/Polyethyleneimine Gel System for Conformance Improvement in High Temperature High Salinity Reservoir; 2017; p D011S019R005. https://doi.org/10.2118/188654-MS.
[278]
S. M. Shehbaz, A Bera. Effects of Nanoparticles, Polymer and Accelerator Concentrations, and Salinity on Gelation Behavior of Polymer Gel Systems for Water Shut-off Jobs in Oil Reservoirs. Pet. Res. 2023, 8 (2), 234-243. https://doi.org/10.1016/j.ptlrs.2022.06.005.
[279]
A. Yudhowijoyo, R. Rafati, A. Sharifi Haddad, D. Pokrajac, M Manzari. Developing Nanocomposite Gels from Biopolymers for Leakage Control in Oil and Gas Wells; 2019; p D031S011R003. https://doi.org/10.2118/195765-MS.
[280]
F. Sun, Z. Dong, M. Lin, M. Chen, S Wang. High Strength Polyacrylamide/nmSiO2 Composite Hydrogel for Well Killing. J. Jpn. Pet. Inst. 2017, 60 (1), 19-25. https://doi.org/10.1627/jpi.60.19.
[281]
H. Ren, M. Zhu, K Haraguchi. Characteristic Swelling-Deswelling of Polymer/Clay Nanocomposite Gels. Macromolecules 2011, 44 (21), 8516-8526. https://doi.org/10.1021/ma201272j.
[282]
L. Yang, J. Ge, H. Wu, H. Guo, J. Shan, G Zhang. Phase Behavior of Colloidal Nanoparticles and Their Enhancement Effect on the Rheological Properties of Polymer Solutions and Gels. RSC Adv. 2024, 14 (12), 8513-8525. https://doi.org/10.1039/D4RA00551A.
[283]
C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge, R. W. Zimmerman. Rheology and Permeability of Crosslinked Polyacrylamide Gel. J. Colloid Interface Sci. 2001, 240 (2), 601-607. https://doi.org/10.1006/jcis.2001. 7633.
[284]
K. S. M. El-Karsani, G. A. Al-Muntasheri, A. S. Sultan, I. A. Hussein. Gelation of a Water-Shutoff Gel at High Pressure and High Temperature: Rheological Investigation. SPE J. 2015, 20 (05), 1103-1112. https://doi.org/10.2118/173185-PA.
[285]
P. Tongwa, R. Nygaard, B Bai. Evaluation of a Nanocomposite Hydrogel for Water Shut-off in Enhanced Oil Recovery Applications: Design, Synthesis, and Characterization. J. Appl. Polym. Sci. 2013, 128 (1), 787-794. https://doi.org/10.1002/app.38258.
[286]
O. Okay, W Oppermann. Polyacrylamide-Clay Nanocomposite Hydrogels:  Rheological and Light Scattering Characterization. Macromolecules 2007, 40 (9), 3378-3387. https://doi.org/10.1021/ma062929v.
[287]
J. Xu, D. Chen, Y. Ke, L. Yang, X. Bai, G. Zhang, Z. Zeng, W. Gao, D Gong. Synthesis and Characterization of Partially Hydrolyzed Polyacrylamide Nanocomposite Weak Gels with High Molecular Weights. J. Appl. Polym. Sci. 2015, 132 (41). https://doi.org/10.1002/app.42626.
[288]
K. L. N. P. Aguiar, K. A. B. Pereira, M. S. L. Mendes, L. G. Pedroni, P. F. Oliveira, C. R. E. Mansur. Study of the Modification of Bentonite for the Formation of Nanocomposite Hydrogels with Potential Applicability in Conformance Control. J. Pet. Sci. Eng. 2020, 195, 107600. https://doi.org/10.1016/j.petrol.2020.107600.
[289]
K. A. B. Pereira, K. L. N. P. Aguiar, P. F. Oliveira, B. M. Vicente, L. G. Pedroni, C. R. E. Mansur. Synthesis of Hydrogel Nanocomposites Based on Partially Hydrolyzed Polyacrylamide, Polyethyleneimine, and Modified Clay. ACS Omega 2020, 5 (10), 4759-4769. https://doi.org/10.1021/acsomega.9b02829.
[290]
F. Sun, M. Lin, Z. Dong, J. Zhang, C. Wang, S. Wang, F Song. Nanosilica-Induced High Mechanical Strength of Nanocomposite Hydrogel for Killing Fluids. J. Colloid Interface Sci. 2015, 458, 45-52. https://doi.org/10.1016/j.jcis. 2015.07.006.
[291]
Q. Yang. Zhao, Mingwei; Gao, Mingwei; Song, Xuguang; and Dai, C. The Experimental Study of Silica Nanoparticles Strengthened Polymer Gel System. J. Dispers. Sci. Technol. 2019, 42 (2), 298-305. https://doi.org/10.1080/01932691. 2019.1679642.
[292]
Z. Azimi Dijvejin, A. Ghaffarkhah, S. Sadeghnejad, M Vafaie Sefti. Effect of Silica Nanoparticle Size on the Mechanical Strength and Wellbore Plugging Performance of SPAM/Chromium (III) Acetate Nanocomposite Gels. Polym. J. 2019, 51 (7), 693-707. https://doi.org/10.1038/s41428-019-0178-3.
[293]
K. A. B. Pereira, P. F. Oliveira, I. Chaves, L. G. Pedroni, L. A. Oliveira, C. R. E. Mansur. Rheological Properties of Nanocomposite Hydrogels Containing Aluminum and Zinc Oxides with Potential Application for Conformance Control. Colloid Polym. Sci. 2022, 300 (6), 609-624. https://doi.org/10.1007/s00396-022-04978-y.
[294]
J. Aalaie, A Rahmatpour. Preparation and Swelling Behavior of Partially Hydrolyzed Polyacrylamide Nanocomposite Hydrogels in Electrolyte Solutions. J. Macromol. Sci. Part B 2007, 47 (1), 98-108. https://doi.org/10.1080/0022234070174 6085.
[295]
S. Mohammadi, M. Vafaie Sefti, M. Baghban salehi, A. Mousavi Moghadam, S. Rajaee, H Naderi. Hydrogel Swelling Properties: Comparison between Conventional and Nanocomposite Hydrogels for Water Shutoff Treatment. Asia-Pac. J. Chem. Eng. 2015, 10 (5), 743-753. https://doi.org/10.1002/apj.1912.
[296]
J. Aalaie, M Youssefi. Study on the Dynamic Rheometry and Swelling Properties of the Polyacrylamide/Laponite Nanocomposite Hydrogels in Electrolyte Media. J. Macromol. Sci. Part B Phys. 2012, 51 (6), 1027-1040. https://doi.org/10.1080/00222348.2011.624044.
[297]
K. B. Zeldovich, A. R. Khokhlov. Osmotically Active and Passive Counterions in Inhomogeneous Polymer Gels. Macromolecules 1999, 32 (10), 3488-3494. https://doi.org/10.1021/ma9815298.
[298]
S. Asadizadeh, S. Ayatollahi; and B ZareNezhad. Performance Evaluation of a New Nanocomposite Polymer Gel for Water Shutoff in Petroleum Reservoirs. J. Dispers. Sci. Technol. 2018, 40 (10), 1479-1487. https://doi.org/10.1080/01932691.2018.1518145.
[299]
S. Abdurrahmanoglu, V. Can, O Okay. Equilibrium Swelling Behavior and Elastic Properties of Polymer-Clay Nanocomposite Hydrogels. J. Appl. Polym. Sci. 2008, 109 (6), 3714-3724. https://doi.org/10.1002/app.28607.
[300]
W.-F. Lee, Y.-T. Fu. Effect of Montmorillonite on the Swelling Behavior and Drug-Release Behavior of Nanocomposite Hydrogels. J. Appl. Polym. Sci. 2003, 89 (13), 3652-3660. https://doi.org/10.1002/app.12624.
[301]
R. Singh; and V Mahto. Preparation, Characterization and Coreflood Investigation of Polyacrylamide/Clay Nanocomposite Hydrogel System for Enhanced Oil Recovery. J. Macromol. Sci. Part B 2016, 55 (11), 1051-1067. https://doi.org/10.1080/00222348.2016.1238332.
[302]
L. Chen, J. Wang, L. Yu, Q. Zhang, M. Fu, Z. Zhao, J Zuo. Experimental Investigation on the Nanosilica-Reinforcing Polyacrylamide/Polyethylenimine Hydrogel for Water Shutoff Treatment. Energy Fuels 2018, 32 (6), 6650-6656. https://doi.org/10.1021/acs.energyfuels.8b00840.
[303]
R. Singh, V. Mahto, H Vuthaluru. Development of a Novel Fly Ash-Polyacrylamide Nanocomposite Gel System for Improved Recovery of Oil from Heterogeneous Reservoir. J. Pet. Sci. Eng. 2018, 165, 325-331. https://doi.org/10.1016/j.petrol.2018.02.038.
[304]
A. M. Almoshin, E. Alsharaeh, A. Fathima, M Bataweel. A Novel Polymer Nanocomposite Graphene Based Gel for High Temperature Water Shutoff Applications; 2018; p SPE-192358-MS. https://doi.org/10.2118/192358-MS.
[305]
H. Jia, C.-C. Niu, X.-Y. Yang. Improved Understanding Nanocomposite Gel Working Mechanisms: From Laboratory Investigation to Wellbore Plugging Application. J. Pet. Sci. Eng. 2020, 191, 107214. https://doi.org/10.1016/j.petrol. 2020.107214.
[306]
O. Agboola, O. S. I. Fayomi, A. Ayodeji, A. O. Ayeni, E. E. Alagbe, S. E. Sanni, E. E. Okoro, L. Moropeng, R. Sadiku, K. W. Kupolati, B. A. Oni. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes 2021, 11 (2), 139. https://doi.org/10.3390/membranes11020139.
[307]
H. E. Al-Hazmi, J. Łuczak, S. Habibzadeh, M. S. Hasanin, A. Mohammadi, A. Esmaeili, S.-J. Kim, M. Khodadadi Yazdi, N. Rabiee, M. Badawi, M. R. Saeb. Polysaccharide Nanocomposites in Wastewater Treatment: A Review. Chemosphere 2024, 347, 140578. https://doi.org/10.1016/j.chemosphere.2023.140578.
[308]
A. Baishnisha, K. Divakaran, V. Balakumar, V. Sasirekha, C. Meenakshi, R. S. Kannan. In-Situ Synthesis of CN@La(OH) 3 Nanocomposite for Improved the Charge Separation and Enhanced the Photocatalytic Activity towards Cr(VI) Reduction under Visible Light. J. Photochem. Photobiol. 2021, 7, 100048. https://doi.org/10.1016/j.jpap.2021.100048.
[309]
V. Melinte, L. Stroea, A. L. Chibac-Scutaru. Polymer Nanocomposites for Photocatalytic Applications. Catalysts 2019, 9 (12), 986. https://doi.org/10.3390/catal9120986.
[310]
H. Ashraf, M., N. Hussain, M. A. Muneer, I. Arif, M. R. Ali. Chapter Four - Chitosan-Based Nanomaterials for Pharmaceutical Waste Remediation. In Advancesin Chemical Pollution, EnvironmentalManagement and Protection; KumarA., BilalM., FerreiraL. F. R.. Recent Advancements In Wastewater Management: Nano-based Remediation; Elsevier, 2024; Vol. 10, pp 83-116. https://doi.org/10.1016/bs.apmp.2023.09.001.
[311]
H. Dinarvand, O Moradi. Sustainable Approaches for Pharmaceutical Pollutant Removal: Advances in Chitosan-Based Nanocomposite Adsorbents. ChemistrySelect 2025, 10 (13), e202405962. https://doi.org/10.1002/slct.202405962.
[312]
M. Pant, J. Singh, D. Bisen, S. Manori, R. K. Shukla. Nanocomposite-Based Photocatalysis:Tackling Pharmaceutical and Personal Care Products (PPCPs) Pollutants in Environmental Remediation. In Sustainable Development Goals Towards Environmental Toxicity and Green Chemistry:Environment and Sustainability; Prakash C., Kesari K. K., Negi A.. Springer Nature Switzerland: Cham, 2025; pp 83-105. https://doi.org/10.1007/978-3-031-77327-3_5.
[313]
H. Bubela, V. Konovalova, J. Kujawa, W Kujawski. Modified Polyvinylidene Fluoride Membranes for Effective Removal of Iron Ions (Fe2+) from Water. Results Eng. 2025, 25, 104312. https://doi.org/10.1016/j.rineng.2025.104312.
[314]
J. Ding, W. Zhang, X. Dai, J. Yao, G Gao. Synchronous Removal and Separation of Multiple Contaminants by Poly (Vinylidene Fluoride)/Polyaniline Ultrafiltration Membrane. J. Environ. Chem. Eng. 2022, 10 (6), 108926. https://doi.org/10.1016/j.jece.2022.108926.
[315]
S. Mishra, A. K. Singh, J. K. Singh. Ferrous Sulfide and Carboxyl-Functionalized Ferroferric Oxide Incorporated PVDF-Based Nanocomposite Membranes for Simultaneous Removal of Highly Toxic Heavy-Metal Ions from Industrial Ground Water. J. Membr. Sci. 2020, 593, 117422. https://doi.org/10.1016/j.memsci.2019.117422.
[316]
F. Kanwal, A. Batool, F. Aziz, Y. Sandali, C. Li, H. M. N. Ullah, M. Qasim, A. Irfan, M Sulaman. Facile Synthesis of Silver Chloride-Polyaniline Nanocomposites and Its Photocatalytic Activity for the Degradation of Methylene Blue. Mater. Sci. Eng. B 2024, 299, 117026. https://doi.org/10.1016/j.mseb.2023.117026.
[317]
A. Kumar, G. Sharma, M. Naushad, P. Singh, S Kalia. Polyacrylamide/Ni0. 02Zn0. 98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal. Ind. Eng. Chem. Res. 2014, 53 (40), 15549-15560. https://doi.org/10.1021/ie5018173.
[318]
K. Yang, L. Xiao, S. Yang, C. Ji, S. Feng, S Xu. Oxidative Polyacrylonitrile Nanofiber-Based Solid-Phase Microextraction Coatings via Wrapping Strategy for Polychlorinated Biphenyls Determination Coupled to GC-MS. Talanta 2025, 285, 127335. https://doi.org/10.1016/j.talanta. 2024.127335.
[319]
T. Zheng, M. Jin, F. Yang, X. Li, W. Wang, J. M. Kim, Y. Jin, X. Zhao, M Jin. Spherical Mesoporous Carbon as a Dispersive Solid Phase Extraction Adsorbent for Rapid Detection of Polychlorinated Biphenyls in Cigarette Papers via GC-MS. Diam. Relat. Mater. 2025, 153, 112117. https://doi.org/10.1016/j.diamond.2025.112117.
[320]
J. Dong, G. Li, J. Gao, H. Zhang, S. Bi, S. Liu, C. Liao, G Jiang. Catalytic Degradation of Brominated Flame Retardants in the Environment: New Techniques and Research Highlights. Sci. Total Environ. 2022, 848, 157695. https://doi.org/10.1016/j.scitotenv.2022.157695.
[321]
M. E. I. Badawy, M. A. I. Taha, R. K. Abdel-Razik, M. M. Abo-El-Saad, Preparation. Characterization, and Pesticide Adsorption Capacity of Chitosan-Magnetic Graphene Oxide Nanoparticles with Toxicological Studies. Environ. Sci. Pollut. Res. 2025, 32 (9), 5159-5185. https://doi.org/10.1007/s11356-025-35975-7.
[322]
S. Ahmad, M. S. Tahir, G. M. Kamal, X. Zhang, S. Nazir, M. B. Tahir, B. Jiang, M Safdar. TiO2/Activated Carbon/2D Selenides Composite Photocatalysts for Industrial Wastewater Treatment. Water 2023, 15 (9), 1788. https://doi.org/10.3390/w15091788.
[323]
P. G. Krishna, P. Chandra Mishra, M. M. Naika, M. Gadewar, P. P. Ananthaswamy, S. Rao, S. R. Boselin Prabhu, K. V. Yatish, H. G. Nagendra, M. Moustafa, M. Al-Shehri, S. K. Jha, B. Lal, S. M. Stephen Santhakumari. Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review. Front. Chem. 2022, 10. https://doi.org/10.3389/fchem.2022.917831.
[324]
S. Polani, S. Melamed, L. Burlaka, F. D. L. Vega, D Zitoun. Large-Scale Synthesis of Polyhedral Ag Nanoparticles for Printed Electronics. RSC Adv. 2017, 7 (86), 54326-54331. https://doi.org/10.1039/C7RA11370F.
[325]
F. Pellegrino, L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V.-D. Hodoroaba, V Maurino. Influence of Agglomeration and Aggregation on the Photocatalytic Activity of TiO2 Nanoparticles. Appl. Catal. B Environ. 2017, 216, 80-87. https://doi.org/10.1016/j.apcatb.2017.05.046.
[326]
S. Bhattacharyya, C. Algieri, L. Donato, M. Davoli, S. Chakraborty, V Calabrò. Remediation of Groundwater Pollution Using Photocatalytic Membrane Reactors. Groundw. Sustain. Dev. 2024, 24, 101055. https://doi.org/10.1016/j.gsd.2023.101055.
[327]
J. Rahchamani, H. Z. Mousavi, M Behzad. Adsorption of Methyl Violet from Aqueous Solution by Polyacrylamide as an Adsorbent: Isotherm and Kinetic Studies. Desalination 2011, 267 (2), 256-260. https://doi.org/10.1016/j.desal. 2010.09.036.
[328]
R. Samadder, N. Akter, A. C. Roy, M. M. Uddin, M. J. Hossen, M. S. Azam. Magnetic Nanocomposite Based on Polyacrylic Acid and Carboxylated Cellulose Nanocrystal for the Removal of Cationic Dye. RSC Adv. 2020, 10 (20), 11945-11956. https://doi.org/10.1039/D0RA00604A.
[329]
J. Rajendran, A. Panneerselvam, S. Ramasamy, P Palanisamy. Methylene Blue and Methyl Orange Removal from Wastewater by Magnetic Adsorbent Based on Activated Carbon Synthesised from Watermelon Shell. Desalination Water Treat. 2024, 317, 100040. https://doi.org/10.1016/j.dwt.2024.100040.
[330]
S. Wang, J. Dou, T. Zhang, S. Li, X Chen. Selective Adsorption of Methyl Orange and Methylene Blue by Porous Carbon Material Prepared From Potassium Citrate. ACS Omega 2023, 8 (38), 35024-35033. https://doi.org/10.1021/acsomega.3c04124.
[331]
M. I. Sujan, S. D. Sarkar, S. Sultana, L. Bushra, R. Tareq, C. K. Roy, M. S. Azam. Bi-Functional Silica Nanoparticles for Simultaneous Enhancement of Mechanical Strength and Swelling Capacity of Hydrogels. RSC Adv. 2020, 10 (11), 6213-6222. https://doi.org/10.1039/C9RA09528D.
[332]
J. Zhang, M. S. Azam, C. Shi, J. Huang, B. Yan, Q. Liu, H Zeng. Poly(Acrylic Acid) Functionalized Magnetic Graphene Oxide Nanocomposite for Removal of Methylene Blue. RSC Adv. 2015, 5 (41), 32272-32282. https://doi.org/10.1039/C5RA01815C.
[333]
T. Saito, S. Kimura, Y. Nishiyama, A Isogai. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8 (8), 2485-2491. https://doi.org/10.1021/bm0703970.
[334]
H. Wu, L. Wang, W. Xu, Z. Xu, G Zhang. Preparation of a CAB-GO/PES Mixed Matrix Ultrafiltration Membrane and Its Antifouling Performance. Membranes 2023, 13 (2), 241. https://doi.org/10.3390/membranes13020241.
[335]
Q. Tang, J. Lin, Z. Wu, J. Wu, M. Huang, Y Yang. Preparation and Photocatalytic Degradability of TiO2/Polyacrylamide Composite. Eur. Polym. J. 2007, 43 (6), 2214-2220. https://doi.org/10.1016/j.eurpolymj.2007.01.054.
[336]
F. A. A. Ali, J. Alam, S. M. H. Qaid, A. K. Shukla, A. S. Al-Fatesh, A. M. Alghamdi, F. Fadhillah, A. I. Osman, M Alhoshan. Fluoride Removal Using Nanofiltration-Ranged Polyamide Thin-Film Nanocomposite Membrane Incorporated Titanium Oxide Nanosheets. Nanomaterials 2024, 14 (8), 731. https://doi.org/10.3390/nano14080731.
[337]
S. Shokrgozar Eslah, Shokrollahzadeh, Soheila, Omid Moini Jazani; and A Samimi. Forward Osmosis Water Desalination: Fabrication of Graphene Oxide-Polyamide/Polysulfone Thin-Film Nanocomposite Membrane with High Water Flux and Low Reverse Salt Diffusion. Sep. Sci. Technol. 2018, 53 (3), 573-583. https://doi.org/10.1080/01496395.2017.1398261.
[338]
S. Xia, L. Yao, Y. Zhao, N. Li, Y Zheng. Preparation of Graphene Oxide Modified Polyamide Thin Film Composite Membranes with Improved Hydrophilicity for Natural Organic Matter Removal. Chem. Eng. J. 2015, 280, 720-727. https://doi.org/10.1016/j.cej.2015.06.063.
[339]
G. S. Lai, W. J. Lau, P. S. Goh, A. F. Ismail, Y. H. Tan, C. Y. Chong, R. Krause-Rehberg, S Awad. Tailor-Made Thin Film Nanocomposite Membrane Incorporated with Graphene Oxide Using Novel Interfacial Polymerization Technique for Enhanced Water Separation. Chem. Eng. J. 2018, 344, 524-534. https://doi.org/10.1016/j.cej.2018.03.116.
[340]
A. Soroush, W. Ma, M. Cyr, Md. S. Rahaman, B. Asadishad, N. In Tufenkji. Situ Silver Decoration on Graphene Oxide-Treated Thin Film Composite Forward Osmosis Membranes: Biocidal Properties and Regeneration Potential. Environ. Sci. Technol. Lett. 2016, 3 (1), 13-18. https://doi.org/10.1021/acs.estlett.5b00304.
[341]
A. Soroush, W. Ma, Y. Silvino, M. S. Rahaman. Surface Modification of Thin Film Composite Forward Osmosis Membrane by Silver-Decorated Graphene-Oxide Nanosheets. Environ. Sci. Nano 2015, 2 (4), 395-405. https://doi.org/10.1039/C5EN00086F.
[342]
M. Abbaszadeh, D. Krizak, S Kundu. Layer-by-Layer Assembly of Graphene Oxide Nanoplatelets Embedded Desalination Membranes with Improved Chlorine Resistance. Desalination 2019, 470, 114116. https://doi.org/10.1016/j.desal.2019.114116.
[343]
J. Chen, B. Yao, C. Li, G Shi. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon 2013, 64, 225-229. https://doi.org/10.1016/j.carbon. 2013.07.055.
[344]
S.-M. Hong, K. B. Lee. Solvent-Assisted Amine Modification of Graphite Oxide for CO2 Adsorption. RSC Adv. 2014, 4 (100), 56707-56712. https://doi.org/10.1039/C4RA09314C.
[345]
W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai. Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing. Chem. Mater. 2014, 26 (9), 2983-2990. https://doi.org/10.1021/cm5007873.
[346]
J.-E. Gu, J. S. Lee, S.-H. Park, I. T. Kim, E. P. Chan, Y.-N. Kwon, J.-H. Lee. Tailoring Interlayer Structure of Molecular Layer-by-Layer Assembled Polyamide Membranes for High Separation Performance. Appl. Surf. Sci. 2015, 356, 659-667. https://doi.org/10.1016/j.apsusc.2015.08.119.
[347]
A. Q. Al-Gamal, W. S. Falath, T. A. Saleh. Enhanced Efficiency of Polyamide Membranes by Incorporating TiO2-Graphene Oxide for Water Purification. J. Mol. Liq. 2021, 323, 114922. https://doi.org/10.1016/j.molliq.2020.114922.
[348]
C. Chen, M. Long, H. Zeng, W. Cai, B. Zhou, J. Zhang, Y. Wu, D. Ding, D Wu. Preparation, Characterization and Visible-Light Activity of Carbon Modified TiO2 with Two Kinds of Carbonaceous Species. J. Mol. Catal. Chem. 2009, 314 (1), 35-41. https://doi.org/10.1016/j.molcata.2009.08.014.
[349]
Y. Wen, J. Yuan, X. Ma, S. Wang, Y Liu. Polymeric Nanocomposite Membranes for Water Treatment: A Review. Environ. Chem. Lett. 2019, 17 (4), 1539-1551. https://doi.org/10.1007/s10311-019-00895-9.
[350]
A. Kajau, M. Motsa, B. B. Mamba, O Mahlangu. Leaching of CuO Nanoparticles from PES Ultrafiltration Membranes. ACS Omega 2021, 6 (47), 31797-31809. https://doi.org/10.1021/acsomega.1c04431.
[351]
K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P. J. J. Alvarez. Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal. Water Res. 2009, 43 (3), 715-723. https://doi.org/10.1016/j.watres.2008.11.014.
[352]
M. Hu, K. Zhong, Y. Liang, S. H. Ehrman, B Mi. Effects of Particle Morphology on the Antibiofouling Performance of Silver Embedded Polysulfone Membranes and Rate of Silver Leaching. Ind. Eng. Chem. Res. 2017, 56 (8), 2240-2246. https://doi.org/10.1021/acs.iecr.6b04934.
[353]
H. Wan, N. J. Briot, A. Saad, L. Ormsbee, D Bhattacharyya. Pore Functionalized PVDF Membranes with In-Situ Synthesized Metal Nanoparticles: Material Characterization, and Toxic Organic Degradation. J. Membr. Sci. 2017, 530, 147-157. https://doi.org/10.1016/j.memsci.2017.02.021.
[354]
P. Schexnailder, G Schmidt. Nanocomposite Polymer Hydrogels. Colloid Polym. Sci. 2009, 287 (1), 1-11. https://doi.org/10.1007/s00396-008-1949-0.
[355]
C.-J. Wu, A. K. Gaharwar, P. J. Schexnailder, G Schmidt. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective. Materials 2010, 3 (5), 2986-3005. https://doi.org/10.3390/ma3052986.
[356]
I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. M. Kenny. Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering: A Review. Polym. Degrad. Stab. 2010, 95 (11), 2126-2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007.
[357]
A. R. Boccaccini, M. Erol, W. J. Stark, D. Mohn, Z. Hong, J. F. Mano. Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review. Compos. Sci. Technol. 2010, 70 (13), 1764-1776. https://doi.org/10.1016/j.compscitech.2010.06.002.
[358]
P Trucillo. Biomaterials for Drug Delivery and Human Applications. Materials 2024, 17 (2), 456. https://doi.org/10.3390/ma17020456.
[359]
B. D. Ulery, L. S. Nair, C. T. Laurencin.Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49 (12), 832-864. https://doi.org/10.1002/polb.22259.
[360]
H. Tian, Z. Tang, X. Zhuang, X. Chen, X Jing. Biodegradable Synthetic Polymers: Preparation, Functionalization and Biomedical Application. Prog. Polym. Sci. 2012, 37 (2), 237-280. https://doi.org/10.1016/j.progpolymsci.2011.06.004.
[361]
M. Puertas-Bartolomé, A. Mora-Boza, L García-Fernández. Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers 2021, 13 (8), 1209. https://doi.org/10.3390/polym13081209.
[362]
S. Falah. Haryadi D. ; Kurniatin, P. A. Komponen Fitokimia Ekstrak Daun Suren (Toona sinensis) serta Uji Sitotoksisitasnya terhadap Sel Vero dan MCF-7.
[363]
S. Li, M. Meng Lin, M. S. Toprak, D. K. Kim, M Muhammed. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010, 1 (1), 5214. https://doi.org/10.3402/nano.v1i0.5214.
[364]
C. I. Idumah. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2021, 29 (5), 509-527. https://doi.org/10.1177/0967391120913658.
[365]
P. Lavrador, M. R. Esteves, V. M. Gaspar, J. F. Mano. Stimuli‐Responsive Nanocomposite Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2021, 31 (8), 2005941. https://doi.org/10.1002/adfm.202005941.
[366]
S. Ghosh, P. Roy, D Lahiri. Polymer Matrix-Based Carbon Nanocomposites for Neural Tissue Engineering. Trans. Indian Natl. Acad. Eng. 2022, 7 (1), 93-114. https://doi.org/10.1007/s41403-021-00291-2.
[367]
R. Sreena, G. Raman, G. Manivasagam, A. J. Nathanael. Bioactive Glass-Polymer Nanocomposites: A Comprehensive Review on Unveiling Their Biomedical Applications. J. Mater. Chem. B 2024, 12 (44), 11278-11301. https://doi.org/10.1039/D4TB01525H.
[368]
A. Luanda, M. Mahadev, R. N. Charyulu, V Badalamoole. Locust Bean Gum-Based Silver Nanocomposite Hydrogel as a Drug Delivery System and an Antibacterial Agent. Int. J. Biol. Macromol. 2024, 282, 137097. https://doi.org/10.1016/j.ijbiomac.2024.137097.
[369]
P. Le Thi, D. Trung Nguyen, T. An Nguyen Huu, Q.-H. Tran, M.-D. Truong, N. Thanh Hang, N. Quyen Tran, K Dong Park. Hyaluronic Acid-Coated Silver Nanoparticles Releasing Doxorubicin for Combinatorial Antitumor Therapy. J. Ind. Eng. Chem. 2025, 142, 431-440. https://doi.org/10.1016/j.jiec.2024.07.049.
[370]
Y. Xue, Z. Zhu, X. Zhang, J. Chen, X. Yang, X. Gao, S. Zhang, F. Luo, J. Wang, W. Zhao, C. Huang, X. Pei, Q Wan. Accelerated Bone Regeneration by MOF Modified Multifunctional Membranes through Enhancement of Osteogenic and Angiogenic Performance. Adv. Healthc. Mater. 2021, 10 (6), 2001369. https://doi.org/10.1002/adhm.202001369.
[371]
N. Arias-Ramos, L. E. Ibarra, M. Serrano-Torres, B. Yagüe, M. D. Caverzán, C. A. Chesta, R. E. Palacios, P López-Larrubia. Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics 2021, 13 (8), 1258. https://doi.org/10.3390/pharmaceutics13081258.
[372]
Y. Lin, Y. Zhang, X. Cai, H. He, C. Yang, J. Ban, B Guo. Design and Self-Assembly of Peptide-Copolymer Conjugates into Nanoparticle Hydrogel for Wound Healing in Diabetes. Int. J. Nanomedicine 2024, Volume 19, 2487-2506. https://doi.org/10.2147/IJN.S452915.
[373]
M. Pooresmaeil,H Namazi. Metal-Organic Framework/Carboxymethyl Starch/Graphene Quantum Dots Ternary Hybrid as a pH Sensitive Anticancer Drug Carrier for Co-Delivery of Curcumin and Doxorubicin. J. Taiwan Inst. Chem. Eng. 2022, 141, 104573. https://doi.org/10.1016/j.jtice.2022.104573.
[374]
A. Aslani, M. Pourmadadi, M. Abdouss, A. Rahdar, A. M. Díez-Pascual. Hydroxyapatite Modified Poly(Acrylic Acid)/Polyethylene Glycol Sustainable Drug Delivery Nanocomposite Prepared via Double Emulsion with Bitter Almond Oil. Sustain. Chem. Pharm. 2024, 38, 101497. https://doi.org/10.1016/j.scp.2024.101497.
[375]
C. Colli, N. Bali, C. Scrocciolani, B. M. Colosimo, M. Sponchioni, E. Mauri, D. Moscatelli, S Bandyopadhyay. Zwitterionic Thermoresponsive Nanocomposites as Functional Systems for Magnetic Hyperthermia-Activated Drug Delivery. Eur. Polym. J. 2025, 224, 113650. https://doi.org/10.1016/j.eurpolymj.2024.113650.
[376]
N. Dashti, V. Akbari, J. Varshosaz, M. Soleimanbeigi, M Rostami. Co-Delivery of Carboplatin and Doxorubicin Using ZIF-8 Coated Chitosan-Poly(N-Isopropyl Acrylamide) Nanoparticles through a Dual pH/Thermo Responsive Strategy to Breast Cancer Cells. Int. J. Biol. Macromol. 2024, 269, 131971. https://doi.org/10.1016/j.ijbiomac.2024.131971.
[377]
N. Huang, J. Wang, X. Cheng, Y. Xu, W Li. Fabrication of PNIPAM-Chitosan/Decatungstoeuropate/Silica Nanocomposite for Thermo/pH Dual-Stimuli-Responsive and Luminescent Drug Delivery System. J. Inorg. Biochem. 2020, 211, 111216. https://doi.org/10.1016/j.jinorgbio.2020.111216.
[378]
L. Soltani, K. Varmira, M Nazari. Comparison of the Differentiation of Ovine Fetal Bone-Marrow Mesenchymal Stem Cells towards Osteocytes on Chitosan/Alginate/CuO-NPs and Chitosan/Alginate/FeO-NPs Scaffolds. Sci. Rep. 2024, 14 (1), 161. https://doi.org/10.1038/s41598-023-50664-6.
[379]
N. Fazeli, E. Arefian, S. Irani, A. Ardeshirylajimi, E Seyedjafari. Accelerated Reconstruction of Rat Calvaria Bone Defect Using 3D-Printed Scaffolds Coated with Hydroxyapatite/Bioglass. Sci. Rep. 2023, 13 (1), 12145. https://doi.org/10.1038/s41598-023-38146-1.
[380]
G. Cidonio, M. Cooke, M. Glinka, J. I. Dawson, L. Grover, R. O. C. Oreffo. Printing Bone in a Gel: Using Nanocomposite Bioink to Print Functionalised Bone Scaffolds. Mater. Today Bio 2019, 4, 100028. https://doi.org/10.1016/j.mtbio.2019. 100028.
[381]
N. Li, L. Xie, Y. Wu, Y. Wu, Y. Liu, Y. Gao, J. Yang, X. Zhang, L Jiang. Dexamethasone-Loaded Zeolitic Imidazolate Frameworks Nanocomposite Hydrogel with Antibacterial and Anti-Inflammatory Effects for Periodontitis Treatment. Mater. Today Bio 2022, 16, 100360. https://doi.org/10.1016/j.mtbio.2022.100360.
[382]
H.-S. Hung, Y.-C. Yang, C.-H. Chang, K.-B. Chang, C.-C. Shen, C.-L. Tang, S.-Y. Liu, C.-H. Lee, C.-M. Yen, M.-Y. Yang. Neural Differentiation Potential of Mesenchymal Stem Cells Enhanced by Biocompatible Chitosan-Gold Nanocomposites. Cells 2022, 11 (12), 1861. https://doi.org/10.3390/cells11121861.
[383]
J. Hong, D. Wu, H. Wang, Z. Gong, X. Zhu, F. Chen, Z. Wang, M. Zhang, X. Wang, X. Fang, S. Yang, J Zhu. Magnetic Fibrin Nanofiber Hydrogel Delivering Iron Oxide Magnetic Nanoparticles Promotes Peripheral Nerve Regeneration. Regen. Biomater. 2024, 11, rbae075. https://doi.org/10.1093/rb/rbae075.
[384]
S. Karimi, Z. Bagher, N. Najmoddin, S. Simorgh, M Pezeshki-Modaress. Alginate-Magnetic Short Nanofibers 3D Composite Hydrogel Enhances the Encapsulated Human Olfactory Mucosa Stem Cells Bioactivity for Potential Nerve Regeneration Application. Int. J. Biol. Macromol. 2021, 167, 796-806. https://doi.org/10.1016/j.ijbiomac.2020.11.199.
[385]
X. Zhang, T. Qi, Y. Sun, X. Chen, P. Yang, S. Wei, X. Cheng, X Dai. Chitosan Nerve Conduit Filled with ZIF-8-Functionalized Guide Microfibres Enhances Nerve Regeneration and Sensory Function Recovery in Sciatic Nerve Defects. Chem. Eng. J. 2024, 480, 147933. https://doi.org/10.1016/j.cej.2023.147933.
[386]
Z. Sang, Z. Liang, G. Xuelian Huang, Z. Chen, X. Ren, X Mei. NIR Sensitive ZnO QDs Decorated MXene Hydrogel Promotes Spinal Cord Repair via Tunable Controlled Release of Zn2+ and Regulating ROS Microenvironment of Mitochondrion. Chem. Eng. J. 2024, 489, 151343. https://doi.org/10.1016/j.cej.2024.151343.
[387]
S. Y. Srinivasan, M. Cler, O. Zapata-Arteaga, B. Dörling, M. Campoy-Quiles, E. Martínez, E. Engel, S. Pérez-Amodio, A Laromaine. Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation. ACS Appl. Bio Mater. 2023, 6 (7), 2860-2874. https://doi.org/10.1021/acsabm.3c00303.
[388]
S. Boularaoui, A. Shanti, M. Lanotte, S. Luo, S. Bawazir, S. Lee, N. Christoforou, K. A. Khan, C Stefanini. Nanocomposite Conductive Bioinks Based on Low-Concentration GelMA and MXene Nanosheets/Gold Nanoparticles Providing Enhanced Printability of Functional Skeletal Muscle Tissues. ACS Biomater. Sci. Eng. 2021, 7 (12), 5810-5822. https://doi.org/10.1021/acsbiomaterials. 1c01193.
[389]
F. Whba, F. Mohamed, R. Whba, M. I. Idris, N. M. Noor, M. K. Bin Mahmood. Synthesis and Characterization of Cellulose Nanocrystals/Gd2O3 Nanocomposite as a Dual-Mode Contrast Agent for MRI via Gamma-Ray Irradiation. Radiat. Phys. Chem. 2024, 221, 111727. https://doi.org/10.1016/j.radphyschem.2024.111727.
[390]
Q. Dong, H. Yang, C. Wan, D. Zheng, Z. Zhou, S. Xie, L. Xu, J. Du, F Li. Her2-Functionalized Gold-Nanoshelled Magnetic Hybrid Nanoparticles: A Theranostic Agent for Dual-Modal Imaging and Photothermal Therapy of Breast Cancer. Nanoscale Res. Lett. 2019, 14 (1), 235. https://doi.org/10.1186/s11671-019-3053-4.
[391]
Z. Jin, J. Chang, P. Dou, S. Jin, M. Jiao, H. Tang, W. Jiang, W. Ren, S Zheng. Tumor Targeted Multifunctional Magnetic Nanobubbles for MR/US Dual Imaging and Focused Ultrasound Triggered Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 586874. https://doi.org/10.3389/fbioe. 2020.586874.
[392]
S. Wang, W. Xi, Z. Wang, H. Zhao, L. Zhao, J. Fang, H. Wang, L Sun. Nanostructures Based on Vanadium Disulfide Growing on UCNPs: Simple Synthesis, Dual-Mode Imaging, and Photothermal Therapy. J. Mater. Chem. B 2020, 8 (27), 5883-5891. https://doi.org/10.1039/D0TB00993H.
[393]
S. Hassani, N. Gharehaghaji, B Divband. Chitosan-Coated Iron Oxide/Graphene Quantum Dots as a Potential Multifunctional Nanohybrid for Bimodal Magnetic Resonance/Fluorescence Imaging and 5-Fluorouracil Delivery. Mater. Today Commun. 2022, 31, 103589. https://doi.org/10.1016/j.mtcomm.2022.103589.
[394]
S. D. Dutta, T. V. Patil, K. Ganguly, A. Randhawa, R. Acharya, M. Moniruzzaman, K.-T. Lim. Trackable and Highly Fluorescent Nanocellulose-Based Printable Bio-Resins for Image-Guided Tissue Regeneration. Carbohydr. Polym. 2023, 320, 121232. https://doi.org/10.1016/j.carbpol.2023. 121232.
[395]
J. Zhu, L. Zhao, P. Zhao, J. Yang, J. Shi, J Zhao. Charge-Conversional Polyethylenimine-Entrapped Gold Nanoparticles with131 I-Labeling for Enhanced Dual Mode SPECT/CT Imaging and Radiotherapy of Tumors. Biomater. Sci. 2020, 8 (14), 3956-3965. https://doi.org/10.1039/D0BM00649A.
[396]
L. Tang, S. Xie, D. Wang, Y. Wei, X. Ji, Y. Wang, N. Zhao, Z. Mou, B. Li, W. R. Sun, P. Y. Wang, N. P. Basmadji, J. L. Pedraz, C. Vairo, E. G. Lafuente, M. Ramalingam, X. Xiao, R Wang. Astragalus Polysaccharide/Carboxymethyl Chitosan/Sodium Alginate Based Electroconductive Hydrogels for Diabetic Wound Healing and Muscle Function Assessment. Carbohydr. Polym. 2025, 350, 123058. https://doi.org/10.1016/j.carbpol.2024.123058.
[397]
M. Manjit, M. Kumar, A. Jha, K. Bharti, K. Kumar, P. Tiwari, R. Tilak, V. Singh, B. Koch, B Mishra. Formulation and Characterization of Polyvinyl Alcohol/Chitosan Composite Nanofiber Co-Loaded with Silver Nanoparticle & Luliconazole Encapsulated Poly Lactic-Co-Glycolic Acid Nanoparticle for Treatment of Diabetic Foot Ulcer. Int. J. Biol. Macromol. 2024, 258, 128978. https://doi.org/10.1016/j.ijbiomac.2023.128978.
[398]
M. Valadi, M. Doostan, K. Khoshnevisan, M. Doostan, H Maleki. Enhanced Healing of Burn Wounds by Multifunctional Alginate-Chitosan Hydrogel Enclosing Silymarin and Zinc ‎oxide ‎nanoparticles. Burns 2024, 50 (8), 2029-2044. https://doi.org/10.1016/j.burns.2024.07.021.
[399]
M. A. F. Maghsoudi, R. A. Asbagh, S. M. A. Tafti, R. M. Aghdam, A. Najjari, P. S. Pirayvatlou, L. Foroutani, A. R. Fazeli. Alginate-Gelatin Composite Hydrogels Loading Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles on Gauze for Burn Wound Healing: In Vitro and in Vivo Studies. Int. J. Biol. Macromol. 2025, 295, 139348. https://doi.org/10.1016/j.ijbiomac.2024.139348.
[400]
Q. Tang, Y. Tan, S. Leng, Q. Liu, L. Zhu, C Wang. Cupric-Polymeric Nanoreactors Integrate into Copper Metabolism to Promote Chronic Diabetic Wounds Healing. Mater. Today Bio 2024, 26, 101087. https://doi.org/10.1016/j.mtbio.2024. 101087.
[401]
Q. Leng, Y. Li, X. Pang, B. Wang, Z. Wu, Y. Lu, K. Xiong, L. Zhao, P. Zhou, S Fu. Curcumin Nanoparticles Incorporated in PVA/Collagen Composite Films Promote Wound Healing. Drug Deliv. 2020, 27 (1), 1676-1685. https://doi.org/10.1080/10717544.2020.1853280.
[402]
Y. Liu, J Li, Temperature Sensors: Materials Design Polymer-Based, Synthesis, and Biomedical Applications Characterization. Funct. Mater. Lett. 2023, 16 (03n04), 2340021. https://doi.org/10.1142/S1793604723400210.
[403]
H. Wu, L. Li, L. Liang, C. Wang, H. Huang, L. Yue, A Zhou. A Highly Sensitive Temperature Sensor Based on Long Period Fiber Grating Coated with Polymer-Bilayer-Membrane. Optik 2024, 313, 171978. https://doi.org/10.1016/j.ijleo. 2024.171978.
[404]
H. Zhou, W. Huang, Y. Qu, Y. Zhang, N. Jiang, X. Lv, Y. Rui, L Wang. Temperature-Responsive Polymeric Sensors Based on Triphenylamine Linked Naphthalimide with Red Aggregation-Induced Emission. Dyes Pigments 2023, 216, 111356. https://doi.org/10.1016/j.dyepig.2023.111356.
[405]
C. Ma, C. Xiong, R. Zhao, K. Wang, M. Yang, Y. Liang, M. Li, D. Han, H. Wang, R. Zhang, G Shao. Capacitive Pressure Sensors Based on Microstructured Polymer-Derived SiCN Ceramics for High-Temperature Applications. J. Colloid Interface Sci. 2025, 678, 503-510. https://doi.org/10.1016/j.jcis.2024.08.153.
[406]
L. R. Khot, S. Panigrahi, D Lin. Development and Evaluation of Piezoelectric-Polymer Thin Film Sensors for Low Concentration Detection of Volatile Organic Compounds Related to Food Safety Applications. Sens. Actuators B Chem. 2011, 153 (1), 1-10. https://doi.org/10.1016/j.snb.2010.05.043.
[407]
X. Zong, N. Zhang, X. Ma, J. Wang, C Zhang. Polymer-Based Flexible Piezoresistive Pressure Sensors Based on Various Micro/Nanostructures Array. Compos. Part Appl. Sci. Manuf. 2025, 190, 108648. https://doi.org/10.1016/j.compositesa.2024.108648.
[408]
K. Althagafy, E. Alotibi, M. Al-Dossari, F Alhashmi Alamer. Design and Construction of a Flexible Conductor Based on a Complex Conductive Polymer: PEDOT:PSS/Polyaniline and Its Application as a Pressure Sensor. Results Phys. 2023, 51, 106689. https://doi.org/10.1016/j.rinp.2023.106689.
[409]
C. Hegarty, S. Kirkwood, M. F. Cardosi, C. L. Lawrence, C. M. Taylor, R. B. Smith, J Davis. Disposable Solid State pH Sensor Based on Flavin Polymer-Ferrocyanide Redox Couples. Microchem. J. 2018, 139, 210-215. https://doi.org/10.1016/j.microc.2018.02.024.
[410]
C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, F. J. Arregui. Optical Fiber pH Sensor Based on Lossy-Mode Resonances by Means of Thin Polymeric Coatings. Sens. Actuators B Chem. 2011, 155 (1), 290-297. https://doi.org/10.1016/j.snb.2010.12.037.
[411]
L. P. A. Silva, J. L. Neto, A. P. L. A. Santos, A. J. C. Da Silva, D. J. P. Lima, A. S. Ribeiro. A Yellow to Magenta Multielectrochromic, pH Sensor Polymer Based on 2, 5-Di(Thienyl)Pyrrole Modified with Methyl Orange Azo Dye. Synth. Met. 2023, 292, 117241. https://doi.org/10.1016/j.synthmet.2022.117241.
[412]
Y. Li, Q. Shen, S. Li, Y Xue. High Quantum-Yield Lignin Fluorescence Materials Based on Polymer Confinement Strategy and Its Application as a Natural Ratiometric pH Sensor Film. Ind. Crops Prod. 2023, 194, 116384. https://doi.org/10.1016/j.indcrop.2023.116384.
[413]
F. Zou, Y. Liu, Y Wang. Relative Humidity Sensor Based on a Nano-Film Deposited LPFG with Hydrophilic Polymer Composite Coating. Opt. Commun. 2025, 574, 131072. https://doi.org/10.1016/j.optcom.2024.131072.
[414]
J. Lou, Y. Yang, C Zhao. Humidity Sensors Based on Octaphenylcyclotetrasiloxane Hypercrosslinked Porous Polymers for Non-Contact Sensing and Respiratory Monitoring. Sens. Actuators B Chem. 2024, 421, 136478. https://doi.org/10.1016/j.snb.2024.136478.
[415]
Y. Zhang, S. Wang, F. Ha, Y. Fu, Q.-X. Jia. Fabrication of a Novel Sensor Based on Ionic Porous Polymer Microspheres for Humidity Monitoring. Sens. Actuators B Chem. 2025, 422, 136638. https://doi.org/10.1016/j.snb.2024.136638.
[416]
Y. Yang, J. Wang, J. Lou, H. Yao, C Zhao. Fast Response Humidity Sensor Based on Hyperbranched Zwitterionic Polymer for Respiratory Monitoring and Non-Contact Human Machine Interface. Chem. Eng. J. 2023, 471, 144582. https://doi.org/10.1016/j.cej.2023.144582.
[417]
Y. Li, J. Lan, J. Hu, S. Hu, J. Wang, F. Zhou, P. Li, J. Jiang, L Chen. Polymer-Based Humidity Sensor with Fast Response and Multiple Functions. Mater. Sci. Semicond. Process. 2025, 190, 109329. https://doi.org/10.1016/j.mssp.2025.109329.
[418]
J. Reibel, S. Stier, A. Voigt, M Rapp. Influence of Phase Position on the Performance of Chemical Sensors Based on SAW Device Oscillators. Anal. Chem. 1998, 70 (24), 5190-5197. https://doi.org/10.1021/ac9805504.
[419]
D. Li, J. Huang, R. B. Kaner. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 42 (1), 135-145. https://doi.org/10.1021/ar800080n.
[420]
D. L. Ellis, M. R. Zakin, L. S. Bernstein, M. F. Rubner. Conductive Polymer Films as Ultrasensitive Chemical Sensors for Hydrazine and Monomethylhydrazine Vapor. Anal. Chem. 1996, 68 (5), 817-822. https://doi.org/10.1021/ac950662k.
[421]
S. E. H. Etaiw, D. M. Abd El-Aziz, I Elzeny. Nano-Architecture Cobalt (III) Supramolecular Coordination Polymer Based on Host-Guest Recognition as an Effective Catalyst for Phenolic Degradation and Chemical Sensor. J. Organomet. Chem. 2020, 921, 121397. https://doi.org/10.1016/j.jorganchem.2020.121397.
[422]
E. Song, J.-W. Choi. Multi-Analyte Detection of Chemical Species Using a Conducting Polymer Nanowire-Based Sensor Array Platform. Sens. Actuators B Chem. 2015, 215, 99-106. https://doi.org/10.1016/j.snb.2015.03.039.
[423]
G. Wei, G. Zhao, N. Lin, S. Guang, H Xu. Dual-Functional Chemical Sensor for Sensitive Detection and Bioimaging of Zn2+ and Pb2+ Based on a Water-Soluble Polymer. Org. Electron. 2020, 82, 105711. https://doi.org/10.1016/j.orgel.2020.105711.
[424]
I. Drachuk, N. Ramani, S. Harbaugh, C. A. Mirkin, J. L. Chávez. Implantable Fluorogenic DNA Biosensor for Stress Detection. ACS Appl. Mater. Interfaces 2025, 17 (1), 130-139. https://doi.org/10.1021/acsami.4c08940.
[425]
S. Dubus, J.-F. Gravel, B. Le Drogoff, P. Nobert, T. Veres, D Boudreau. PCR-Free DNA Detection Using a Magnetic Bead-Supported Polymeric Transducer and Microelectromagnetic Traps. Anal. Chem. 2006, 78 (13), 4457-4464. https://doi.org/10.1021/ac060486n.
[426]
W. Zhao, P.-Y. Ge, J.-J. Xu, H.-Y. Chen. Selective Detection of Hypertoxic Organophosphates Pesticides via PDMS Composite Based Acetylcholinesterase-Inhibition Biosensor. Environ. Sci. Technol. 2009, 43 (17), 6724-6729. https://doi.org/10.1021/es900841n.
[427]
S. Chen, X. Chen, L. Zhang, J. Gao, Q Ma. Electrochemiluminescence Detection of Escherichia Coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS Appl. Mater. Interfaces 2017, 9 (6), 5430-5436. https://doi.org/10.1021/acsami.6b12455.
[428]
L. T. Zegebreal, N. A. Tegegne, F. G. Hone. Recent Progress in Hybrid Conducting Polymers and Metal Oxide Nanocomposite for Room-Temperature Gas Sensor Applications: A Review. Sens. Actuators Phys. 2023, 359, 114472. https://doi.org/10.1016/j.sna.2023.114472.
[429]
J. Sahoo, R. Sharma, V. Pachauri, S Gandhi. Biomimetic/Bioderived Nanoengineered Interfaces for Biosensor Applications: A Review. ACS Appl. Nano Mater. 2024, 7 (17), 19854-19875. https://doi.org/10.1021/acsanm. 4c04554.
[430]
S. Park, C. Park, H Yoon. Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids. Polymers 2017, 9 (5), 155. https://doi.org/10.3390/polym9050155.
[431]
A. Arslan, S. Kıralp, L. Toppare, A Bozkurt. Novel Conducting Polymer Electrolyte Biosensor Based on Poly(1-Vinyl Imidazole) and Poly(Acrylic Acid) Networks. Langmuir 2006, 22 (6), 2912-2915. https://doi.org/10.1021/la0530539.
[432]
A. L. Kukla, A. S. Pavluchenko, Yu. M. Shirshov, N. V. Konoshchuk, O. Yu. Posudievsky. Application of Sensor Arrays Based on Thin Films of Conducting Polymers for Chemical Recognition of Volatile Organic Solvents. Sens. Actuators B Chem. 2009, 135 (2), 541-551. https://doi.org/10.1016/j.snb.2008.09.027.
[433]
S. Teanphonkrang, A. Ernst, S. Janke, P. Chaiyen, J. Sucharitakul, W. Suginta, P. Khunkaewla, W. Schuhmann, A. Schulte, A Ruff. Amperometric Detection of the Urinary Disease Biomarker p- HPA by Allosteric Modulation of a Redox Polymer-Embedded Bacterial Reductase. ACS Sens. 2019, 4 (5), 1270-1278. https://doi.org/10.1021/acssensors. 9b00144.
[434]
J. Ren, L. Wang, X. Han, J. Cheng, H. Lv, J. Wang, X. Jian, M. Zhao, L Jia. Organic Silicone Sol-Gel Polymer as a Noncovalent Carrier of Receptor Proteins for Label-Free Optical Biosensor Application. ACS Appl. Mater. Interfaces 2013, 5 (2), 386-394. https://doi.org/10.1021/am3024355.
[435]
H. Akbulut, G. Bozokalfa, D. N. Asker, B. Demir, E. Guler, D. Odaci Demirkol, S. Timur, Y Yagci. Polythiophene- g -Poly(Ethylene Glycol) with Lateral Amino Groups as a Novel Matrix for Biosensor Construction. ACS Appl. Mater. Interfaces 2015, 7 (37), 20612-20622. https://doi.org/10.1021/acsami.5b04967.
[436]
X. Zhu, L. Liu, W. Cao, R. Yuan, H Wang. Ultra-Sensitive MicroRNA Biosensor Based on Strong Aggregation-Induced Electrochemiluminescence from Bidentate Ligand-Stabilized Copper Nanoclusters in Polymer Hydrogel. Anal. Chem. 2023, 95 (13), 5553-5560. https://doi.org/10.1021/acs.analchem. 2c04565.
[437]
Z. Hou, D. Sun, G. Wang, J Ma. Highly Sensitive Cholesterol Concentration Trace Detection Based on a Microfiber Optic-Biosensor Enhanced Specificity with Beta-Cyclodextrin Film. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2023, 300, 122881. https://doi.org/10.1016/j.saa.2023.122881.
[438]
M. Norouzi, E. Ahmadi, Z Mohamadnia. Stimuli-Responsive Fluorescent Polymer Nanoparticles: Versatile Applications in Rapid Colorimetric and Fluorometric Detection of Cyanide in Blood Plasma, pH Sensing, Paper-Based Sensors, and Intelligent Artworks. J. Photochem. Photobiol. Chem. 2024, 452, 115552. https://doi.org/10.1016/j.jphotochem.2024. 115552.
[439]
J. M. Paloni, B. D. Olsen. Polymer Domains Control Diffusion in Protein-Polymer Conjugate Biosensors. ACS Appl. Polym. Mater. 2020, 2 (11), 4481-4492. https://doi.org/10.1021/acsapm.0c00534.
[440]
S. Wang, A. Zhao, G. Li, X. Sun, J. Wang, M Cui. In Situ Regenerable Molecularly Imprinted Polymer Biosensor for Electrochemical Detection of Nonelectroactive Branched-Chain Amino Acids in Human Sweat. Anal. Chem. 2024, 96 (51), 20287-20295. https://doi.org/10.1021/acs.analchem. 4c05144.
[441]
J.-H. Luo, Q. Li, S.-H. Chen, R Yuan. Coreactant-Free Dual Amplified Electrochemiluminescent Biosensor Based on Conjugated Polymer Dots for the Ultrasensitive Detection of MicroRNA. ACS Appl. Mater. Interfaces 2019, 11 (30), 27363-27370. https://doi.org/10.1021/acsami.9b09339.
[442]
C. Wang, Q. Han, F. Mo, M. Chen, Z. Xiong, Y Fu. Novel Luminescent Nanostructured Coordination Polymer: Facile Fabrication and Application in Electrochemiluminescence Biosensor for microRNA-141 Detection. Anal. Chem. 2020, 92 (18), 12145-12151. https://doi.org/10.1021/acs.analchem. 0c00130.
[443]
M. M. Mohamed, H. Gamal, A. El-Didamony, A. O. Youssef, E. Elshahat, E. H. Mohamed, M. S. Attia. Polymer-Based Terbium Complex as a Fluorescent Probe for Cancer Antigen 125 Detection: A Promising Tool for Early Diagnosis of Ovarian Cancer. ACS Omega 2024, 9 (23), 24916-24924. https://doi.org/10.1021/acsomega.4c01814.
[444]
R. Han, Y. Li, M. Chen, W. Li, C. Ding, X Luo. Antifouling Electrochemical Biosensor Based on the Designed Functional Peptide and the Electrodeposited Conducting Polymer for CTC Analysis in Human Blood. Anal. Chem. 2022, 94 (4), 2204-2211. https://doi.org/10.1021/acs.analchem.1c04787.
[445]
J. Gamby, M. Lazerges, H. H. Girault, C. Deslouis, C. Gabrielli, H. Perrot, B Tribollet. Electroacoustic Polymer Microchip as an Alternative to Quartz Crystal Microbalance for Biosensor Development. Anal. Chem. 2008, 80 (23), 8900-8907. https://doi.org/10.1021/ac800443u.
[446]
D. Zhao, Q. Zhang, Y. Zhang, Y. Liu, Z. Pei, Z. Yuan, S Sang. Sandwich-Type Surface Stress Biosensor Based on Self-Assembled Gold Nanoparticles in PDMS Film for BSA Detection. ACS Biomater. Sci. Eng. 2019, 5 (11), 6274-6280. https://doi.org/10.1021/acsbiomaterials.9b01073.
[447]
Z. Kahveci, M. J. Martínez-Tomé, R. Mallavia, C. R. Mateo. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase. ACS Appl. Mater. Interfaces 2017, 9 (1), 136-144. https://doi.org/10.1021/acsami.6b12434.
[448]
M. S. Khan, S. K. Misra, Z. Wang, E. Daza, A. S. Schwartz-Duval, J. M. Kus, D. Pan, D Pan. Paper-Based Analytical Biosensor Chip Designed from Graphene-Nanoplatelet-Amphiphilic-Diblock- Co -Polymer Composite for Cortisol Detection in Human Saliva. Anal. Chem. 2017, 89 (3), 2107-2115. https://doi.org/10.1021/acs.analchem.6b04769.
[449]
Y. Liu, Y. Zhu, Y. Yuan, H. Xing, K. Tang, L. Lin, N He. Aptamer-Functionalized Hydrogel Biosensor Targeting Trace Antibiotics via UV Detection. ACS Appl. Polym. Mater. 2024, 6 (13), 7877-7885. https://doi.org/10.1021/acsapm.4c01477.
[450]
C. Leitão, P. Antunes, J. L. Pinto, J. M. Bastos, P André. Carotid Distension Waves Acquired with a Fiber Sensor as an Alternative to Tonometry for Central Arterial Systolic Pressure Assessment in Young Subjects. Measurement 2017, 95, 45-49. https://doi.org/10.1016/j.measurement.2016.09.035.
[451]
C. P. McMahon, R. D. O’Neill. Polymer-Enzyme Composite Biosensor with High Glutamate Sensitivity and Low Oxygen Dependence. Anal. Chem. 2005, 77 (4), 1196-1199. https://doi.org/10.1021/ac048686r.
[452]
C. P. McMahon, G. Rocchitta, P. A. Serra, S. M. Kirwan, J. P. Lowry, R. D. O’Neill. Control of the Oxygen Dependence of an Implantable Polymer/Enzyme Composite Biosensor for Glutamate. Anal. Chem. 2006, 78 (7), 2352-2359. https://doi.org/10.1021/ac0518194.
[453]
Q. Cai, K. Zeng, C. Ruan, T. A. Desai, C. A. Grimes. A Wireless, Remote Query Glucose Biosensor Based on a pH-Sensitive Polymer. Anal. Chem. 2004, 76 (14), 4038-4043. https://doi.org/10.1021/ac0498516.
[454]
L. Muthulakshmi, J. Annaraj, P.-L. Chang, M. Selvaraj, G. Singh, B Arumugam. Bioflocculant Polymer Reduced CuO/NiO Binary Transition Metal Oxide Nanocomposite: Application as an Effective Non-Enzymatic Glucose Sensor. Inorg. Chem. Commun. 2024, 170, 113250. https://doi.org/10.1016/j.inoche.2024.113250.
[455]
H. J. Cheon, S. Y. Shin, V. V. Tran, B. Park, H. Yoon, M Chang. Preparation of Conjugated Polymer/Reduced Graphene Oxide Nanocomposites for High-Performance Volatile Organic Compound Sensors. Chem. Eng. J. 2021, 425, 131424. https://doi.org/10.1016/j.cej.2021.131424.
[456]
A. Qiagedeer, H. Yamagishi, S. Hayashi, Y Yamamoto. Polymer Optical Microcavity Sensor for Volatile Organic Compounds with Distinct Selectivity toward Aromatic Hydrocarbons. ACS Omega 2021, 6 (32), 21066-21070. https://doi.org/10.1021/acsomega.1c02749.
[457]
P. Wei, H. Leng, Q. Chen, R. C. Advincula, E. B. Pentzer. Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing. ACS Appl. Polym. Mater. 2019, 1 (4), 885-892. https://doi.org/10.1021/acsapm.9b00118.
[458]
H.-C. Liao, C.-P. Hsu, M.-C. Wu, C.-F. Lu, W.-F. Su. Conjugated Polymer/Nanoparticles Nanocomposites for High Efficient and Real-Time Volatile Organic Compounds Sensors. Anal. Chem. 2013, 85 (19), 9305-9311. https://doi.org/10.1021/ac402052h.
[459]
T. Julian, S. N. Hidayat, A. Rianjanu, A. B. Dharmawan, H. S. Wasisto, K Triyana. Intelligent Mobile Electronic Nose System Comprising a Hybrid Polymer-Functionalized Quartz Crystal Microbalance Sensor Array. ACS Omega 2020, 5 (45), 29492-29503. https://doi.org/10.1021/acsomega.0c04433.
[460]
Q. Wu, Y. Yuan, X. Wang, X. Bu, M. Jiao, W. Liu, C. Han, L. Hu, X. Wang, X Li. Highly Selective Ionic Gel-Based Gas Sensor for Halogenated Volatile Organic Compound Detection: Effect of Dipole-Dipole Interaction. ACS Sens. 2023, 8 (12), 4566-4576. https://doi.org/10.1021/acssensors. 3c01476.
[461]
C. Xu, X. Zhao, C. Wang, X. Zhu, H Xiang. Hollow Fiber Sensors with a Turn-On Fluorescence Response, Recycling, and Water Proofing for Monitoring Benzene Series. ACS Appl. Polym. Mater. 2024, 6 (16), 9794-9805. https://doi.org/10.1021/acsapm.4c01650.
[462]
F. Yang, J. Ma, Q. Zhu, Z. Ma, J Wang. Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection. ACS Appl. Mater. Interfaces 2022, 14 (19), 22510-22520. https://doi.org/10.1021/acsami. 2c06880.
[463]
S. Tajik, H. Beitollahi, F. G. Nejad, Z. Dourandish, M. A. Khalilzadeh, H. W. Jang, R. A. Venditti, R. S. Varma, M Shokouhimehr. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind. Eng. Chem. Res. 2021, 60 (3), 1112-1136. https://doi.org/10.1021/acs.iecr.0c04952.
[464]
P. Shukla, P Saxena. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope. Chin. J. Polym. Sci. 2021, 39 (6), 665-691. https://doi.org/10.1007/s10118-021-2553-8.
[465]
M. M. Rahman, K. H. Khan, M. M. H. Parvez, N. Irizarry, M. N. Uddin. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes 2025, 13 (4), 994. https://doi.org/10.3390/pr13040994.
[466]
M. D. Ramírez-Alba, A. Álvarez-Caballero, L. Resina, M. Romanini, R. Macovez, M. M. Pérez-Madrigal, C Alemán. Alginate-Graft-Polyacrylic Acid Electro-Responsive Hydrogels: Impact of the Conducting Polymer and Application as Hydrogen Peroxide Sensor. Eur. Polym. J. 2024, 219, 113388. https://doi.org/10.1016/j.eurpolymj.2024. 113388.
[467]
T. Baimpos, P. Boutikos, V. Nikolakis, D Kouzoudis. A Polymer-Metglas Sensor Used to Detect Volatile Organic Compounds. Sens. Actuators Phys. 2010, 158 (2), 249-253. https://doi.org/10.1016/j.sna.2010.01.020.
[468]
R. W. C. Li, L. Ventura, J. Gruber, Y. Kawano, L. R. F. Carvalho. A Selective Conductive Polymer-Based Sensor for Volatile Halogenated Organic Compounds (VHOC). Sens. Actuators B Chem. 2008, 131 (2), 646-651. https://doi.org/10.1016/j.snb.2007.12.051.
[469]
S. Veeralingam, S Badhulika. Bi2 S3 /PVDF/Ppy-Based Freestanding, Wearable, Transient Nanomembrane for Ultrasensitive Pressure, Strain, and Temperature Sensing. ACS Appl. Bio Mater. 2021, 4 (1), 14-23. https://doi.org/10.1021/acsabm.0c01399.
[470]
R. C. Bailey, J. T. Hupp. Micropatterned Polymeric Gratings as Chemoresponsive Volatile Organic Compound Sensors: Implications for Analyte Detection and Identification via Diffraction-Based Sensor Arrays. Anal. Chem. 2003, 75 (10), 2392-2398. https://doi.org/10.1021/ac026391c.
[471]
M. M. Kiaee, T. Maeder, J Brugger. Near-Room-Temperature Detection of Aromatic Compounds with Inkjet-Printed Plasticized Polymer Composites. ACS Sens. 2024, 9 (3), 1382-1390. https://doi.org/10.1021/acssensors.3c02406.
[472]
T. Cowen, M Cheffena. Molecularly Imprinted Polymer Real-Time Gas Sensor for Ambient Methanol Vapor Analysis Developed Using Principles of Sustainable Chemistry. ACS Sustain. Chem. Eng. 2023, 11 (29), 10598-10604. https://doi.org/10.1021/acssuschemeng.3c02266.
[473]
L. I. B. Silva, T. A. P. Rocha-Santos, A. C. Duarte. Development of a Fluorosiloxane Polymer-Coated Optical Fibre Sensor for Detection of Organic Volatile Compounds. Sens. Actuators B Chem. 2008, 132 (1), 280-289. https://doi.org/10.1016/j.snb.2008.01.039.
[474]
J. K. Jung, J. H. Lee, Y. W. Kim, N. K. Chung. Development of Portable Gas Sensing System for Measuring Gas Emission Concentration and Diffusivity Using Commercial Manometric Sensors in Gas Exposed Polymers: Application to Pure Gases, H2, He, N2, O2 and Ar. Sens. Actuators B Chem. 2024, 418, 136240. https://doi.org/10.1016/j.snb.2024.136240.
[475]
O. S. Kwon, J.-Y. Hong, S. J. Park, Y. Jang, J Jang. Resistive Gas Sensors Based on Precisely Size-Controlled Polypyrrole Nanoparticles: Effects of Particle Size and Deposition Method. J. Phys. Chem. C 2010, 114 (44), 18874-18879. https://doi.org/10.1021/jp1083086.
[476]
J. Jun, J. Oh, D. H. Shin, S. G. Kim, J. S. Lee, W. Kim,J Jang, Wireless. Room Temperature Volatile Organic Compound Sensor Based on Polypyrrole Nanoparticle Immobilized Ultrahigh Frequency Radio Frequency Identification Tag. ACS Appl. Mater. Interfaces 2016, 8 (48), 33139-33147. https://doi.org/10.1021/acsami.6b08344.
[477]
Y. H. Ngo, M. Brothers, J. A. Martin, C. C. Grigsby, K. Fullerton, R. R. Naik, S. S. Kim. Chemically Enhanced Polymer-Coated Carbon Nanotube Electronic Gas Sensor for Isopropyl Alcohol Detection. ACS Omega 2018, 3 (6), 6230-6236. https://doi.org/10.1021/acsomega.8b01039.
[478]
S. Dolai, S. K. Bhunia, S. S. Beglaryan, S. Kolusheva, L. Zeiri, R Jelinek. Colorimetric Polydiacetylene-Aerogel Detector for Volatile Organic Compounds (VOCs). ACS Appl. Mater. Interfaces 2017, 9 (3), 2891-2898. https://doi.org/10.1021/acsami.6b14469.
[479]
A. Kumar, D. Tripathi, R. K. Rawat, P Chauhan. Hybrid MoS2 /PEDOT:PSS Sensor for Volatile Organic Compounds Detection at Room Temperature: Experimental and DFT Insights. ACS Appl. Nano Mater. 2024, 7 (23), 27599-27611. https://doi.org/10.1021/acsanm.4c05614.
[480]
L. Magnasco, A. Lanfranchi, M. Martusciello, H. Megahd, G. Manfredi, P. Lova, B. Koszarna, D. T. Gryko, D Comoretto. Fluorimetric Detection of Vapor Pollutants with Diketopyrrolopyrrole Polymer Microcavities. ACS Omega 2024, 9 (41), 42375-42385. https://doi.org/10.1021/acsomega. 4c05710.
[481]
J. L. Martínez-Hurtado, C. A. B. Davidson, J. Blyth, C. R. Lowe. Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds. Langmuir 2010, 26 (19), 15694-15699. https://doi.org/10.1021/la102693m.
[482]
P. J. W. Hands, P. J. Laughlin, D Bloor. Metal-Polymer Composite Sensors for Volatile Organic Compounds: Part 1. Flow-through Chemi-Resistors. Sens. Actuators B Chem. 2012, 162 (1), 400-408. https://doi.org/10.1016/j.snb. 2011.12.016.
[483]
A. Graham, P. J. Laughlin, D Bloor. Metal-Polymer Composite Sensors for Volatile Organic Compounds: Part 2. Stand Alone Chemi-Resistors. Sens. Actuators B Chem. 2013, 177, 507-514. https://doi.org/10.1016/j.snb.2012.11.046.
[484]
P. Si, J. Mortensen, A. Komolov, J. Denborg, P. J. Møller. Polymer Coated Quartz Crystal Microbalance Sensors for Detection of Volatile Organic Compounds in Gas Mixtures. Anal. Chim. Acta 2007, 597 (2), 223-230. https://doi.org/10.1016/j.aca.2007.06.050.
[485]
R. J. Rath, W. B. Zhang, O. Kavehei, F. Dehghani, S. Naficy, S. Farajikhah, F Oveissi. Developing a Chemiresistive Gas Sensor Array for Simultaneous Detection of Ammonia and Carbon Dioxide Gases. ACS Sens. 2024, 9 (6), 2836-2845. https://doi.org/10.1021/acssensors.3c02372.
[486]
W. Silva Dias, L. C. Demosthenes, C. da. Costa, J. C. M. da; Pocrifka, L. A. ; Reis do Nascimento N. ; Coelho Pinheiro S. ; Garcia del Pino G. ; Valin Rivera, J. L. ; Valin Fernández M. ;Costa de Macêdo Neto, J. 3D Printing of Virucidal Polymer Nanocomposites (PLA/Copper Nanoparticles). Polymers 2025, 17 (3), 283. https://doi.org/10.3390/polym17030283.
[487]
N. Gowriboy, R. Kalaivizhi, N. J. Kaleekkal, M. R. Ganesh, K. A. Aswathy. Fabrication and Characterization of Polymer Nanocomposites Membrane (Cu-MOF@CA/PES) for Water Treatment. J. Environ. Chem. Eng. 2022, 10 (6), 108668. https://doi.org/10.1016/j.jece.2022.108668.
[488]
M Tanahashi. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials 2010, 3 (3), 1593-1619. https://doi.org/10.3390/ma3031593.
[489]
J. Wang, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, X Li. Emerging Carbon-Based Quantum Dots for Sustainable Photocatalysis. Green Chem. 2023, 25 (1), 32-58. https://doi.org/10.1039/D2GC03160D.
[490]
S. Bai, M. Yang, J. Jiang, X. He, J. Zou, Z. Xiong, G. Liao, S Liu. Recent Advances of MXenes as Electrocatalysts for Hydrogen Evolution Reaction. Npj 2D Mater. Appl. 2021, 5 (1), 78. https://doi.org/10.1038/s41699-021-00259-4.
[491]
J. Wang, Q. Qin, F. Li, Y. Anjarsari, W. Sun, R. Azzahiidah, J. Zou, K. Xiang, H. Ma, J. Jiang, Arramel. Recent Advances of MXenes Mo2C-Based Materials for Efficient Photocatalytic Hydrogen Evolution Reaction. Carbon Lett. 2023, 33 (5), 1381-1394. https://doi.org/10.1007/s42823-022-00401-2.
[492]
J. Jiang, F. Li, L. Ding, C. Zhang, Arramel, X Li. MXenes/CNTs-Based Hybrids: Fabrications, Mechanisms, and Modification Strategies for Energy and Environmental Applications. Nano Res. 2024, 17 (5), 3429-3454. https://doi.org/10.1007/s12274-023-6302-x.
[493]
N. Song, J. Jiang, S. Hong, Y. Wang, C. Li, H Dong. State-of-the-Art Advancements in Single Atom Electrocatalysts Originating from MOFs for Electrochemical Energy Conversion. Chin. J. Catal. 2024, 59, 38-81. https://doi.org/10.1016/S1872-2067(23)64622-4.
[494]
N. Li, Y. Yang, Z. Shi, Z. Lan, A. Arramel, P. Zhang, W.-J. Ong, J. Jiang, J Lu. Shedding Light on the Energy Applications of Emerging 2D Hybrid Organic-Inorganic Halide Perovskites. iScience 2022, 25 (2). https://doi.org/10.1016/j.isci.2022.103753.

脚注

Authors from Nano Center Indonesia express their gratitude to PT. Nanotech Indonesia Global Tbk for the start-up research grant. The funder was not involved in the study design, collection, analysis, data interpretation, article writing, or the decision to submit it for publication. This work is supported by the National Natural Science Foundation of China (Nos. 62004143, 22502150), the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (No. LCX202404).


PDF(3273 KB)

Accesses

Citation

Detail

段落导航
相关文章

/