Recent advances and applications of on-chip micro-/nanodevices for energy conversion and storage

Haiyan Xiang, Jan E. Lopez, Travis Hu, Jiayuan Cheng, Jizhou Jiang, Huimin Li, Tang Liu, Song Liu

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250102.

PDF(12426 KB)
PDF(12426 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250102. DOI: 10.63823/20250102
Review article

Recent advances and applications of on-chip micro-/nanodevices for energy conversion and storage

Author information +
History +

Abstract

The electrochemical conversion and storage of renewable energy presents substantial potential as a sustainable alternative to conventional fossil fuel energy systems. This approach not only supports the transition to cleaner energy but also enhances energy security and promotes environmental sustainability. Central to this field is electrocatalysis, which facilitates the transformation of reactants into high-value chemicals and relies on the efficiency of catalytic processes. The increasing interest in electrocatalytic activity is simulated by advances in catalyst design and mechanistic understanding. However, traditional electrochemical techniques often fall short in uncovering the distinct properties of nanomaterials. Recent advancements in physical nanoelectronic devices indicate that the application of small-scale devices in electrocatalysis offers a promising and innovative solution. These innovative devices enable precise electrochemical investigations by employing individual nanowires or nanosheets as working electrodes, thereby providing multi-dimensional insights into electrochemical interfaces. This review presents recent advancements in on-chip microdevices, emphasizing their significant developments in energy conversion and storage technologies. It highlights the critical role of micro-devices in fostering future innovations and enhancing their applications within the energy sector.

Key words

Energy conversion / Energy storage / On-chip micro-/nanodevices / Electrocatalytic microdevices / Microelectrochemical

Cite this article

Download Citations
Haiyan Xiang , Jan E. Lopez , Travis Hu , et al . Recent advances and applications of on-chip micro-/nanodevices for energy conversion and storage[J]. Composite Functional Materials. 2025, 1(1): 20250102 https://doi.org/10.63823/20250102

References

[1]
D. Larcher,Tarascon. J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2015, 7, 19-29. https://doi.org/10.1038/nchem.2085
[2]
Nathan S. Lewis. Powering the planet. MRS Bulletin 2007, 32, 808-820. https://doi.org/10.1557/mrs2007.168
[3]
Yunhe Li; Li, Yuanqing, Shang, Jiangwei, Cheng, Xiuwen. Application of metal sulfides in energy conversion and storage. Chinese Chemical Letters 2023, 34, 107928. https://doi.org/10.1016/j.cclet.2022.107928
[4]
Chongbei Wu; Li, Xuan; Liu, Xia; Wei, Shuai; Tang, Jiaxin; Cheng, Yonggao; Zhao, Zhe; Wang, Aobing; Jiang, Jizhou. Ce-doping-induced defect effects boosting H2 generation. Journal of Materials Science & Technology 2025, 218, 305-316. https://doi.org/10.1016/j.jmst.2024.08.040
[5]
Hui Wu, Xiong, Zhennan; Mao, Yiyang, Zhang, Huihui; Hu, Yingying; Shen Jun; Wang, Baofeng; Yu, Xuebin. MoS2/MoO2 nanosheets anchored on carbon cloth for high-performance magnesium- and sodium-ion storage. Journal of Materials Science & Technology 2023, 143, 43-53. https://doi.org/10.1016/j.jmst.2022.09.039
[6]
Hong Chen; Zhou. Yansong; Guo, Wei; Xia, Bao Yu. Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chinese Chemical Letters 2022, 33, 1831-1840. https://doi.org/10.1016/j.cclet.2021.09.034
[7]
Rongchen Shen; Xie, Jun, Xiang, Quanjun; Chen, Xiaobo, Jiang, Jizhou; Li, Xin. Ni-based photocatalytic H2-production cocatalysts. Chinese Journal of Catalysis 2019, 40, 240-288. https://doi.org/10.1016/S1872-2067(19)63294-8
[8]
Qiaomei Luo; Sun, Lan; Zhao, Yiwei; Wang, Chen; Xin, Hongqiang; Li, Danyang; Ma, Fei. Synergistic effects of 1T MoS2 and interface engineering on hollow nicop nanorods for enhanced hydrogen evolution activity. Journal of Materials Science & Technology 2023, 145, 165-173. https://doi.org/10.1016/j.jmst.2022.10.044
[9]
Bo You; Sun, Yujie. Innovative strategies for electrocatalytic water splitting. Accounts of Chemical Research 2018, 51, 1571-1580. 10. 1021/acs. accounts. 8b00002
[10]
Bo You; Tang, Michael T.; Tsai, Charlie, Abild-Pedersen, Frank, Zheng, Xiaolin; Li Hong. Enhancing electrocatalytic water splitting by strain engineering. Advanced Materials 2019, 31, 1807001. https://doi.org/10.1002/adma.201807001
[11]
Jian Zhang, Zhang, Qiuyu; Feng, Xinliang. Support and interface effects in water-splitting electrocatalysts. Advanced Materials 2019, 31, 1808167. https://doi.org/10.1002/adma. 201808167
[12]
Kunpeng Ding. Jiang, Tian; Peng, Jian; Wang, Peng; Gou, Wenshan; Xu, Qingyu; Fan, Qi; Wang, Wei; Sun, Yueming. Recent advances of Na3V2(PO4)3as cathode for rechargeable zinc-based batteries. Carbon Letters 2023, 33, 989-1012. 10. 1007/s42823-023-00500-8
[13]
Mengyu Li; Song, Minglei; Ni, Wenting; Xiao, Zhaohui; Li, Yingying; Jia, Jianfeng; Wang, Shuangyin; Wang, Yanyong. Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. Chinese Chemical Letters 2023, 34, 107571. https://doi.org/10.1016/j.cclet.2022.05.085
[14]
Chao Shen; Li, Nan; Gu, Jin-Lei; Peng, Zu-Ling; Xie, Ke-Yu. Multifunctional interfacial and structural anode for dendrite-free lithium metal-based batteries. Journal of Central South University 2022, 29, 373-385. 10. 1007/s11771-022-4901-4
[15]
Deliang Cheng; Yang, Lichun; Hu. Renzong; Cui, Jie; Liu, Jiangwen; Zhu, Min. Construction of SnS-Mo-graphene nanosheets composite for highly reversible and stable lithium/sodium storage. Journal of Materials Science & Technology 2022, 121, 190-198. https://doi.org/10.1016/j.jmst.2021.11.079
[16]
Tuzhi Xiong; Yao, Xincheng, Adekoya, David; Yang, Hao, Sadeeq Balogun, M. Scaffold-regulation buffered MoS2 anode kinetics for high-performance Na-/K-ion storage. Journal of Materials Science & Technology 2023, 145, 14-24. https://doi.org/10.1016/j.jmst.2022.10.051
[17]
Yun Tian; Wei, Zhengyu; Li, Fan; Li, Songjie; Shao, Lixiang; He, Mengyuan; Sun, Panfei; Li, Yuanyuan. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries. Journal of Materials Science & Technology 2022, 100, 216-223. https://doi.org/10.1016/j.jmst.2021.06.002
[18]
Chang Liu; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming. Advanced materials for energy storage. Advanced Materials 2010, 22, E28-E62. https://doi.org/10.1002/adma.200903328
[19]
J. Mitali, Dhinakaran S., Mohamad, A. A. Energy storage systems: A review. Energy Storage and Saving 2022, 1, 166-216. https://doi.org/10.1016/j.enss.2022.07.002
[20]
H. Ibrahim, Ilinca A., Perron. J. Energy storage systems—characteristics and comparisons. Renewable and Sustainable Energy Reviews 2008, 12, 1221-1250. https://doi.org/10.1016/j.rser.2007.01.023
[21]
Yating Wen; Wang, Xiaobin, Huang. Jingyi; Li, Yu; Li, Tao; Ren, Baozeng. Coffee grounds derived sulfur and nitrogen dual-doped porous carbon for the cathode material of lithium‑sulfur batteries. Carbon Letters 2023, 33, 1265-1278. 10. 1007/s42823-023-00483-6
[22]
Lun Li; Ji, Pengxia, Huang Meng, Zhang, Zixin; Wang Hong, Verpoort, Francis; Yang, Jinlong; He, Daping. Hybrid ionic/electronic interphase enabling uniform nucleation and fast diffusion kinetics for stable lithium metal anode. Chinese Chemical Letters 2024, 35, 109144. https://doi.org/10.1016/j.cclet.2023.109144
[23]
Shao-Bo Liu; Zhao, Yong-Feng; Li, Heng-Yue; Yang, Jun-Liang. One-step synthesis of porous nickel-aluminum layered double hydroxide with oxygen defects for high-performance supercapacitor electrode. Journal of Central South University 2023, 30, 4138-4148. 10. 1007/s11771-023-5501-7
[24]
Yadong Liu; Tang, Cheng; Sun, Weiwei; Zhu, Guanjia; Du, Aijun, Zhang, Haijiao. In-situ conversion growth of carbon-coated MoS2/n-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries. Journal of Materials Science & Technology 2022, 102, 8-15. https://doi.org/10.1016/j.jmst.2021.06.036
[25]
Taegun Kim; Park, Chanwoo, Samuel, Edmund P.; Kim, Yong-Il; An, Seongpil; Yoon, Sam S. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric. Journal of Materials Science & Technology 2022, 100, 254-264. https://doi.org/10.1016/j.jmst.2021.05.044
[26]
Shelly Singla; Basu, Soumen; Devi, Pooja. Solar light responsive 2D/2D BiVO4/SnS2 nanocomposite for photocatalytic elimination of recalcitrant antibiotics and photoelectrocatalytic water splitting with high performance. Journal of Industrial and Engineering Chemistry 2023, 118, 119-131. https://doi.org/10.1016/j.jiec.2022.10.051
[27]
Zhi Wei Seh, Kibsgaard, Jakob, Dickens, Colin F., Chorkendorff Ib, Nørskov, Jens K., Jaramillo, Thomas F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. https://doi.org/10.1126/science.aad4998
[28]
Vojislav R. Stamenkovic, Strmcnik, Dusan, Lopes, Pietro P., Markovic, Nenad M. Energy and fuels from electrochemical interfaces. Nature Materials 2017, 16, 57-69. https://doi.org/10.1038/nmat4738
[29]
Bing Li; Wu, Yang; Li, Neng; Chen, Xingzhu; Zeng, Xianbing; Arramel; Zhao, Xiujian; Jiang, Jizhou. Single-metal atoms supported on mbenes for robust electrochemical hydrogen evolution. ACS Applied Materials & Interfaces 2020, 12, 9261-9267. https://doi.org/10.1021/acsami.9b20552
[30]
Seunghak Lee; Seok, Eunjeong; Kang, Haeun; Park, Dohyub; Kim, Minjun; Kam, Dayoung; Choi, Minsu; Kim, Hyung-Seok; Choi, Wonchang. Silicone oil-based selective SiOC coating onto hydrophobic RGO-MoS2 composite materials to achieve ultra-stable composite anodes in sodium-ion batteries. Journal of Industrial and Engineering Chemistry 2023, 126, 239-248. https://doi.org/10.1016/j.jiec.2023.06.013
[31]
Wen Luo; Yan, Xin; Pan, Xuelei; Jiao, Jinying; Mai, Liqiang. What makes on-chip microdevices stand out in electrocatalysis? Small 2024, 20, 2305020. https://doi.org/ 10.1002/smll.202305020
[32]
Zhongshui Li; Yue, Yang; Peng, Junchen; Luo, Zhimin. Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters 2023, 34, 107119. https://doi.org/ 10.1016/j.cclet.2022.01.012
[33]
Mingxuan Du; Li, Deng; Liu, Shengzhong; Yan, Junqing. Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production. Chinese Chemical Letters 2023, 34, 108156. https://doi.org/10.1016/j.cclet. 2023.108156
[34]
Yifeng Shi; Lyu, Zhiheng; Zhao Ming; Chen, Ruhui, Nguyen, Quynh N.; Xia, Younan. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chemical Reviews 2021, 121, 649-735. 10. 1021/acs. chemrev. 0c00454
[35]
Younan Xia, Campbell, Charles T., Roldan Cuenya, Beatriz, Mavrikakis, Manos. Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals. Chemical Reviews 2021, 121, 563-566. 10. 1021/acs. chemrev. 0c01269
[36]
Libo Sun, Reddu, Vikas, Fisher. Adrian C. ; Wang, Xin. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy & Environmental Science 2020, 13, 374-403. 10. 1039/ C9EE03660A
[37]
Xiyu Zhao; Lu. Changrui; Li, Jing; Liu, Caiyun; Cao, Cheng; Wu, Tianli. Graphene quantum dots decorated 3d transitional metal (Fe, Co) oxide graphene nanoribbons for oxygen reduction reaction. Carbon Letters 2023, 33, 155-162. 10. 1007/s42823-022-00412-z
[38]
Donghui Guo, Shibuya Riku, Akiba, Chisato; Saji, Shunsuke, Kondo, Takahiro, Nakamura, Junji. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365. 10. 1126/science. aad0832
[39]
Yanwei Lum; Ager, Joel W.Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2reduction. Nature Catalysis 2019, 2, 86-93. 10. 1038/s41929-018-0201-7
[40]
Ershuai Liu; Li, Jingkun; Jiao Li; Doan, Huong Thi Thanh; Liu, Zeyan; Zhao, Zipeng, Huang Yu, Abraham K. M., Mukerjee, Sanjeev; Jia, Qingying. Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts. Journal of the American Chemical Society 2019, 141, 3232-3239. 10. 1021/jacs. 8b13228
[41]
Santosh K. Singh, Takeyasu, Kotaro, Nakamura, Junji. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Advanced Materials 2019, 31, 1804297. https://doi.org/ 10.1002/adma.201804297
[42]
Youwen Liu; Hua, Xuemin; Xiao, Chong; Zhou, Tengfei, Huang, Pengcheng; Guo, Zaiping; Pan, Bicai; Xie Yi. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. Journal of the American Chemical Society 2016, 138, 5087-5092. 10. 1021/jacs. 6b00858
[43]
Youwen Liu; Xiao, Chong; Lyu, Mengjie; Lin Yue; Cai, Weizheng, Huang, Pengcheng; Tong Wei; Zou, Youming; Xie Yi. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angewandte Chemie International Edition 2015, 54, 11231-11235. https://doi.org/ 10.1002/anie.201505320
[44]
Yichao Huang; Sun, Yuanhui, Zheng, Xueli; Aoki, Toshihiro, Pattengale, Brian. Huang, Jier; He, Xin; Bian, Wei; Younan, Sabrina; Williams, Nicholas; Hu, Jun; Ge, Jingxuan; Pu, Ning; Yan, Xingxu; Pan, Xiaoqing; Zhang, Lijun; Wei, Yongge; Gu, Jing. Atomically engineering activation sites onto metallic 1T-MoS2catalysts for enhanced electrochemical hydrogen evolution. Nature Communications 2019, 10, 982. 10. 1038/s41467-019-08877-9
[45]
Xiaoli Cui; Sun, Yunmeng; Xu, Xinxin. Polyoxometalate derived p-n heterojunction for optimized reaction interface and improved her. Chinese Chemical Letters 2023, 34, 107348. https://doi.org/10.1016/j.cclet.2022.03.071
[46]
Taeseong Kim; Park, Hyerim; Park, Byung-Hyun. Joon Yoon Seog; Liu, Chunli; Joo, Sang Woo; Son, Namgyu; Kang, Misook. Long-term catalytic durability in z-scheme CdS@1T-WS2 heterojunction materials. Journal of Industrial and Engineering Chemistry 2022, 105, 337-351. https://doi.org/ 10.1016/j.jiec.2021.09.035
[47]
Ramin Khezri, Parnianifard Amir, Motlagh, Shiva Rezaei, Etesami, Mohammad, Lao-Atiman, Woranunt, Abbasi Ali, Arpornwichanop, Amornchai, Mohamad, Ahmad Azmin, Olaru, Sorin, Kheawhom, Soorathep. Performance enhancement through parameter optimization for a rechargeable zinc-air flow battery. Journal of Industrial and Engineering Chemistry 2022, 115, 570-582. https://doi.org/ 10.1016/j.jiec.2022.09.003
[48]
Yongming Sun; Liu, Nian; Cui, Yi. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 2016, 1, 16071. 10. 1038/nenergy. 2016. 71
[49]
Yang-Kook Sun; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren Yang; Wang, Steve; Yoon, Chong Seung, Myung, Seung-Taek, Amine, Khalil. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials 2012, 11, 942-947. 10. 1038/nmat3435
[50]
John B. Goodenough; Kim, Youngsik. Challenges for rechargeable Li batteries. Chemistry of Materials 2010, 22, 587-603. 10. 1021/cm901452z
[51]
Bruno Scrosati. Paper powers battery breakthrough. Nature Nanotechnology 2007, 2, 598-599. 10. 1038/nnano. 2007. 318
[52]
Lin Ma, Hendrickson, Kenville E.; Wei, Shuya, Archer, Lynden A. Nanomaterials: Science and applications in the lithium-sulfur battery. Nano Today 2015, 10, 315-338. https://doi.org/10.1016/j.nantod.2015.04.011
[53]
Yury Gogotsi, Penner, Reginald M. Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081-2083. 10. 1021/acsnano. 8b01914
[54]
Naichao Li, Martin, Charles R., Scrosati, Bruno. Nanomaterial-based Li-ion battery electrodes. Journal of Power Sources 2001, 97-98, 240-243. https://doi.org/ 10.1016/S0378-7753(01)00760-1
[55]
Chunhai Jiang, Hosono Eiji; Zhou, Haoshen. Nanomaterials for lithium ion batteries. Nano Today 2006, 1, 28-33. https://doi.org/10.1016/S1748-0132(06)70114-1
[56]
Martin Pumera. Graphene-based nanomaterials for energy storage. Energy & Environmental Science 2011, 4, 668-674. 10. 1039/C0EE00295J
[57]
Mihail C. Roco. The long view of nanotechnology development: The national nanotechnology initiative at 10 years. Journal of Nanoparticle Research 2011, 13, 427-445. 10. 1007/s11051-010-0192-z
[58]
Laura Mazzola. Commercializing nanotechnology. Nature Biotechnology 2003, 21, 1137-1143. 10. 1038/nbt1003-1137
[59]
Scott E. Mcneil. Nanotechnology for the biologist. Journal of Leukocyte Biology 2005, 78, 585-594. 10. 1189/jlb. 0205074
[60]
Hui You; Zhuo, Zhiwen; Lu, Xiufang; Liu, Youwen; Guo, Yabin; Wang, Wenbin; Yang Huan; Wu, Xiaojun; Li, Huiqiao; Zhai, Tianyou. 1T′-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chemistry 2019, 1, 396-406. 10. 31635/ ccschem. 019. 20190022
[61]
Hengli Duan; Wang, Chao; Li, Guinan; Tan, Hao; Hu, Wei; Cai, Liang; Liu, Wei; Li, Na; Ji, Qianqian; Wang, Yao; Lu, Ying; Yan, Wensheng; Hu, Fengchun; Zhang, Wenhua; Sun, Zhihu; Qi, Zeming; Song, Li; Wei, Shiqiang. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction:Beyond single-atom catalysis. Angewandte Chemie International Edition 2021, 60, 7251-7258. https://doi.org/10.1002/anie. 202014968
[62]
Zhe Qu; Ma, Jiachen, Huang Yang; Li, Tianming; Tang, Hongmei; Wang, Xiaoyu; Liu, Siyuan. Zhang Kai; Lu, Jing; Karnaushenko, Dmitriy D. ; Karnaushenko, Daniil; Zhu, Minshen; Schmidt, Oliver G. A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices. Advanced Materials 2024, 36, 2310667. https://doi.org/10.1002/adma.202310667
[63]
Thomas F. Jaramillo, Jørgensen, Kristina P., Bonde, Jacob, Nielsen, Jane H., Horch, Sebastian, Chorkendorff Ib. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102. 10. 1126/science. 1141483
[64]
Jing Zhang; Wu. Jingjie; Guo, Hua; Chen, Weibing; Yuan, Jiangtan; Martinez, Ulises; Gupta, Gautam; Mohite, Aditya; Ajayan, Pulickel M. ; Lou, Jun. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Advanced Materials 2017, 29, 1701955. https://doi.org/10.1002/adma. 201701955
[65]
Fu Liu; Fan, Zhanxi. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chemical Society Reviews 2023, 52, 1723-1772. 10. 1039/D2CS00931E
[66]
Chang-Hyun Kim, Frisbie C, Daniel. Field effect modulation of outer-sphere electrochemistry at back-gated, ultrathin ZnO electrodes. Journal of the American Chemical Society 2016, 138, 7220-7223. 10. 1021/jacs. 6b02547
[67]
Yan Wang; Kim, Chang-Hyun; Yoo, Youngdong, Johns, James E., Frisbie C, Daniel. Field effect modulation of heterogeneous charge transfer kinetics at back-gated two-dimensional MoS2 electrodes. Nano Letters 2017, 17, 7586-7592. 10. 1021/acs. nanolett. 7b03564
[68]
Mengning Ding; He, Qiyuan; Wang, Gongming, Cheng, Hung-Chieh, Huang Yu; Duan, Xiangfeng. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nature Communications 2015, 6, 7867. 10. 1038/ncomms8867
[69]
Yongmin He; He, Qiyuan; Wang, Luqing; Zhu Chao, Golani, Prafful, Handoko, Albertus D.; Yu, Xuechao; Gao, Caitian; Ding, Mengning; Wang, Xuewen; Liu, Fucai; Zeng, Qingsheng; Yu Peng; Guo, Shasha, Yakobson, Boris I.; Wang, Liang; Seh, Zhi Wei, Zhang, Zhuhua; Wu, Minghong; Wang, Qi Jie, Zhang Hua; Liu, Zheng. Self-gating in semiconductor electrocatalysis. Nature Materials 2019, 18, 1098-1104. 10. 1038/s41563-019-0426-0
[70]
Liqiang Mai; Xu, Lin; Han, Chunhua; Xu, Xu; Luo, Yanzhu; Zhao, Shiyong; Zhao, Yunlong. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Letters 2010, 10, 4750-4755. 10. 1021/nl103343w
[71]
Rangeet Bhattacharyya; Key, Baris; Chen, Hailong; Best, Adam S., Hollenkamp, Anthony F.; Grey, Clare P. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Materials 2010, 9, 504-510. 10. 1038/nmat2764
[72]
Albertus D. Handoko; Wei, Fengxia, Jenndy; Yeo, Boon Siang; Seh, Zhi Wei. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis 2018, 1, 922-934. 10. 1038/s41929-018-0182-6
[73]
Yilin Deng, Handoko, Albertus D.; Du, Yonghua; Xi, Shibo; Yeo, Boon Siang. In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of cuiii oxides as catalytically active species. ACS Catalysis 2016, 6, 2473-2481. 10. 1021/acscatal. 6b00205
[74]
Jian Yu Huang, Zhong Li; Wang, Chong Min, Sullivan, John P.; Xu, Wu, Zhang, Li Qiang; Mao, Scott X., Hudak, Nicholas S.; Liu, Xiao Hua, Subramanian, Arunkumar; Fan, Hongyou; Qi, Liang, Kushima, Akihiro; Li, Ju. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515-1520. 10. 1126/science. 1195628
[75]
Patrick Parkinson; Lee, Yu-Heng; Fu, Lan, Breuer, Steffen; Tan, Hark Hoe, Jagadish, Chennupati. Three-dimensional in situ photocurrent mapping for nanowire photovoltaics. Nano Letters 2013, 13, 1405-1409. 10. 1021/nl304170q
[76]
Hessam Ghassemi; Au, Ming; Chen, Ning; Heiden, Patricia A. ; Yassar, Reza S. In situ electrochemical lithiation/
delithiation observation of individual amorphous si nanorods. ACS Nano 2011, 5, 7805-7811. 10. 1021/nn2029814
[77]
Liqiang Mai; Dong, Yajie; Xu Lin; Han, Chunhua. Single nanowire electrochemical devices. Nano Letters 2010, 10, 4273-4278. 10. 1021/nl102845r
[78]
Wenzhong Bao; Wan, Jiayu; Han, Xiaogang; Cai, Xinghan; Zhu, Hongli; Kim, Dohun; Ma, Dakang; Xu, Yunlu, Munday. Jeremy N. ; Drew, H. Dennis; Fuhrer, Michael S. ; Hu, Liangbing. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nature Communications 2014, 5, 4224. 10. 1038/ncomms5224
[79]
Xu Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu Lin; Mai, Liqiang. In situ investigation of Li and Na ion transport with single nanowire electrochemical devices. Nano Letters 2015, 15, 3879-3884. 10. 1021/acs. nanolett. 5b00705
[80]
Damien Voiry, Fullon, Raymond; Yang, Jieun.De Carvalho Castro E silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J. ; Batson, Philip E. ; Gupta, Gautam; Mohite, Adityad; Dong, Liang; Er, Dequan; Shenoy, Vivek B. ; Asefa, Tewodros; Chhowalla, Manish. The role of electronic coupling between substrate and 2d MoS2 nanosheets in electrocatalytic production of hydrogen. Nature Materials 2016, 15, 1003-1009. 10. 1038/nmat4660
[81]
Mengyu Yan; Pan, Xuelei; Wang, Peiyao; Chen Fei; He, Liang, Jiang, Gengping; Wang, Junhui; Liu. Jefferson Z. ; Xu, Xu; Liao, Xiaobin; Yang, Jihui; Mai, Liqiang. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Letters 2017, 17, 4109-4115. 10. 1021/acs. nanolett. 7b00855
[82]
Yifu Yu; Nam, Gwang-Hyeon; He, Qiyuan; Wu, Xue-Jun, Zhang Kang; Yang, Zhenzhong; Chen, Junze; Ma, Qinglang; Zhao, Meiting; Liu, Zhengqing; Ran, Fei-Rong; Wang, Xingzhi; Li Hai. Huang Xiao; Li, Bing; Xiong, Qihua; Zhang Qing; Liu, Zheng; Gu, Lin; Du, Yonghua; Huang Wei; Zhang Hua.High phase-purity 1T′- MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry 2018, 10, 638-643. 10. 1038/s41557-018-0035-6
[83]
Ankun Yang; Zhou, Guangmin; Kong, Xian, Vilá Rafael A.; Pei, Allen; Wu, Yecun; Yu, Xiaoyun, Zheng, Xueli; Wu, Chun-Lan; Liu. Bofei; Chen, Hao; Xu, Yan; Chen, Di; Li, Yanxi; Fakra, Sirine; Hwang, Harold Y. ; Qin, Jian; Chu, Steven; Cui, Yi. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nature Nanotechnology 2020, 15, 231-237. 10. 1038/s41565-019-0624-6
[84]
Junlei Qi; Wang, Wenbin; Li, Yihan; Sun, Yamei; Wu, Zongxiao; Bao Kai; Wang, Lingzhi; Ye, Ruquan; Ding, Mengning; He, Qiyuan. On-chip investigation of electrocatalytic oxygen reduction reaction of 2d materials. Small 2022, 18, 2204010. https://doi.org/10.1002/smll. 202204010
[85]
Chun-Hao Chiang; Yang, Yueh-Chiang; Lin, Jia-Wei; Lin, Yung-Chang; Chen, Po-Tuan; Dong, Chung-Li; Lin, Hung-Min; Chan, Kwun Man; Kao, Yu-Ting, Suenaga Kazu; Chiu, Po-Wen; Chen, Chun-Wei. Bifunctional monolayer WSe2/graphene self-stitching heterojunction microreactors for efficient overall water splitting in neutral medium. ACS Nano 2022, 16, 18274-18283. 10. 1021/acsnano. 2c05986
[86]
Zhihong Huang, Cheng Tao; Shah, Aamir Hassan, Zhong, Guangyan; Wan, Chengzhang; Wang, Peiqi; Ding, Mengning, Huang Jin; Wan. Zhong; Wang, Sibo; Cai, Jin; Peng, Bosi; Liu, Haotian; Huang, Yu; Goddard, William A. ; Duan, Xiangfeng. Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nature Catalysis 2024, 7, 678-688. 10. 1038/s41929-024-01156-x
[87]
Khalil Amine, Belharouak, Ilias; Chen, Zonghai; Tran, Taison, Yumoto, Hiroyuki; Ota, Naoki, Myung, Seung-Taek; Sun, Yang-Kook. Nanostructured anode material for high-power battery system in electric vehicles. Advanced Materials 2010, 22, 3052-3057. https://doi.org/10.1002/adma.201000441
[88]
Gideon Segev, Beeman, Jeffrey W., Greenblatt, Jeffery B., Sharp, Ian D. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nature Materials 2018, 17, 1115-1121. 10. 1038/s41563-018-0198-y
[89]
Shane D. Beattie, Loveridge M. J.; Lain, Michael J., Ferrari, Stefania, Polzin, Bryant J., Bhagat, Rohit, Dashwood, Richard. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies. Journal of Power Sources 2016, 302, 426-430. https://doi.org/10.1016/j.jpowsour.2015.10.066
[90]
Yoshinao Hoshi, Narita Yuki, Honda, Keiichiro, Ohtaki, Tomomi, Shitanda Isao, Itagaki, Masayuki. Optimization of reference electrode position in a three-electrode cell for impedance measurements in lithium-ion rechargeable battery by finite element method. Journal of Power Sources 2015, 288, 168-175. https://doi.org/10.1016/j.jpowsour.2015.04.065
[91]
Bozhi Tian, Zheng, Xiaolin, Kempa. Thomas J. ; Fang, Ying; Yu, Nanfang; Yu, Guihua; Huang, Jinlin; Lieber, Charles M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889. 10. 1038/ nature06181
[92]
Yifang Chen. Nanofabrication by electron beam lithography and its applications: A review. Microelectronic Engineering 2015, 135, 57-72. https://doi.org/10.1016/j.mee.2015.02.042
[93]
C. Vieu, Carcenac F., Pépin A.; Chen Y.,Mejias M., Lebib A., Manin-Ferlazzo L., Couraud L., Launois H. Electron beam lithography: Resolution limits and applications. Applied Surface Science 2000, 164, 111-117. https://doi.org/10.1016/ S0169-4332(00)00352-4
[94]
Chris D. English, Shine, Gautam, Dorgan, Vincent E., Saraswat. Krishna C. ; Pop, Eric. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Letters 2016, 16, 3824-3830. 10. 1021/acs. nanolett. 6b01309
[95]
Matthew B. E. Griffiths, Pallister, Peter J., Mandia, David J., Barry, Seán T. Atomic layer deposition of gold metal. Chemistry of Materials 2016, 28, 44-46. 10. 1021/acs. chemmater. 5b04562
[96]
Xuelei Pan; Hong, Xufeng; Xu Lin; Li, Yanxi; Yan, Mengyu; Mai, Liqiang. On-chip micro/nano devices for energy conversion and storage. Nano Today 2019, 28, 100764. https://doi.org/10.1016/j.nantod.2019.100764
[97]
Biao Qin, Saeed, Muhammad Zeeshan; Li, Qiuqiu; Zhu. Manli; Feng, Ya; Zhou, Ziqi; Fang, Jingzhi; Hossain, Mongur; Zhang, Zucheng; Zhou, Yucheng; Huangfu, Ying; Song, Rong; Tang, Jingmei; Li, Bailing; Liu, Jialing; Wang, Di; He, Kun; Zhang, Hongmei; Wu, Ruixia; Zhao, Bei; Li, Jia; Liao, Lei; Wei, Zhongming; Li, Bo; Duan, Xiangfeng; Duan, Xidong. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nature Communications 2023, 14, 304. 10. 1038/s41467-023-35983-6
[98]
Hiroshi Nishiyama, Yamada Taro, Nakabayashi, Mamiko, Maehara, Yoshiki, Yamaguchi, Masaharu, Kuromiya, Yasuko, Nagatsuma, Yoshie, Tokudome, Hiromasa, Akiyama, Seiji, Watanabe, Tomoaki, Narushima, Ryoichi, Okunaka, Sayuri, Shibata, Naoya, Takata, Tsuyoshi, Hisatomi, Takashi, Domen, Kazunari. Photocatalytic solar hydrogen production from water on a 100 m2 scale. Nature 2021, 598, 304-307. 10. 1038/s41586-021-03907-3
[99]
Peng Zhou, Navid, Ishtiaque Ahmed; Ma, Yongjin; Xiao.Yixin; Wang, Ping; Ye, Zhengwei; Zhou, Baowen; Sun, Kai; Mi, Zetian. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70. 10. 1038/s41586-022-05399-1
[100]
Jizhou Jiang, Xiong, Zhiguo; Wang, Haitao, Xiang Kun; Wu, Pingxiu; Zou, Jing.Anchoring pt nanoparticles and Ti3C2Txmxene nanosheets on CdS nanospheres as efficient synergistic photocatalysts for hydrogen evolution. Science China Technological Sciences 2022, 65, 3020-3028. 10. 1007/s11431-022-2192-6
[101]
Taylor S. Teitsworth; Hill, David J., Litvin, Samantha R., Ritchie, Earl T.; Park, Jin-Sung, Custer, James P., Taggart, Aaron D., Bottum, Samuel R., Morley, Sarah E.; Kim, Seokhyoung, Mcbride, James R., Atkin, Joanna M., Cahoon, James F. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023, 614, 270-274. 10. 1038/s41586-022-05549-5
[102]
Yan Jiao, Zheng Yao, Jaroniec, Mietek; Qiao, Shi Zhang. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews 2015, 44, 2060-2086. 10. 1039/C4CS00470A
[103]
Jizhou Jiang; Bai, Saishuai; Yang. Meiqing; Zou, Jing; Li, Neng; Peng, Jiahe; Wang, Haitao; Xiang, Kun; Liu, Song; Zhai, Tianyou. Strategic design and fabrication of mxenes-Ti3CnCl2@CoS2core-shell nanostructure for high-efficiency hydrogen evolution. Nano Research 2022, 15, 5977-5986. 10. 1007/s12274-022-4276-8
[104]
Prasad V. Sarma, Kayal, Arijit, Sharma, Chithra H., Thalakulam, Madhu, Mitra J., Shaijumon M. M. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano 2019, 13, 10448-10455. 10. 1021/acsnano. 9b04250
[105]
Yu Zhou, Silva, Jose Luis, Woods, John M., Pondick, Joshua V.; Feng, Qingliang, Liang. Zhixiu; Liu, Wen; Lin, Li; Deng, Bingchen; Brena, Barbara; Xia, Fengnian; Peng, Hailin; Liu, Zhongfan; Wang, Hailiang; Araujo, Carlos Moyses; Cha, Judy J. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Advanced Materials 2018, 30, 1706076. https://doi.org/10.1002/adma.201706076
[106]
Dake Hu; Zhao, Tianqi; Ping, Xiaofan, Zheng, Husong; Xing Lei; Liu, Xiaozhi, Zheng, Jingying; Sun, Lifei; Gu Lin; Tao, Chenggang; Wang Dong; Jiao, Liying. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angewandte Chemie International Edition 2019, 58, 6977-6981. https://doi.org/ 10.1002/anie.201901612
[107]
Yongjoon Lee; Ling, Ning; Kim, Dohyun; Zhao, Mali; Eshete, Yonas Assefa; Kim, Eunah; Cho, Suyeon; Yang, Heejun. Heterophase boundary for active hydrogen evolution in MoTe2. Advanced Functional Materials 2022, 32, 2105675. https://doi.org/10.1002/adfm.202105675
[108]
Hang Xia; Sang, Xiaoru; Shu, Zhiwen; Shi Zude; Li, Zefen; Guo, Shasha; An, Xiuyun; Gao, Caitian; Liu, Fucai; Duan, Huigao; Liu, Zheng; He, Yongmin. The practice of reaction window in an electrocatalytic on-chip microcell. Nature Communications 2023, 14, 6838. 10. 1038/s41467-023-42645-0
[109]
Damien Voiry, Yamaguchi, Hisato; Li, Junwen, Silva, Rafael, Alves, Diego C. B., Fujita, Takeshi; Chen, Mingwei, Asefa, Tewodros, Shenoy. Vivek B. ; Eda, Goki; Chhowalla, Manish. Enhanced catalytic activity in strained chemically exfoliated WS2nanosheets for hydrogen evolution. Nature Materials 2013, 12, 850-855. 10. 1038/nmat3700
[110]
Damien Voiry, Salehi, Maryam, Silva, Rafael, Fujita, Takeshi; Chen, Mingwei, Asefa, Tewodros, Shenoy. Vivek B. ; Eda, Goki; Chhowalla, Manish. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters 2013, 13, 6222-6227. 10. 1021/nl403661s
[111]
Charlie Tsai; Chan, Karen, Nørskov, Jens K., Abild-Pedersen, Frank. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surface Science 2015, 640, 133-140. https://doi.org/10.1016/j.susc. 2015.01.019
[112]
Yongmin He; Tang, Pengyi; Hu, Zhili; He, Qiyuan; Zhu Chao; Wang, Luqing; Zeng, Qingsheng, Golani, Prafful; Gao, Guanhui; Fu Wei, Huang, Zhiqi; Gao, Caitian; Xia Juan; Wang, Xingli; Wang, Xuewen; Zhu Chao, Ramasse, Quentin M., Zhang Ao; An, Boxing, Zhang, Yongzhe, Martí-Sánchez Sara, Morante, Joan Ramon; Wang, Liang; Tay, Beng Kang, Yakobson, Boris I., Trampert, Achim, Zhang Hua; Wu, Minghong; Wang, Qi Jie, Arbiol, Jordi; Liu, Zheng. Engineering grain boundaries at the 2d limit for the hydrogen evolution reaction. Nature Communications 2020, 11, 57. 10. 1038/s41467-019-13631-2
[113]
Wenbin Wang; Song, Yun; Ke, Chengxuan; Li, Yang; Liu, Yong; Ma, Chen; Wu, Zongxiao; Qi, Junlei; Bao, Kai; Wang, Lingzhi; Wu, Jingkun; Jiang, Shan; Zhao, Jiong; Lee, Chun-Sing; Chen, Ye; Luo, Guangfu; He, Qiyuan; Ye, Ruquan. Filling the gap between heteroatom doping and edge enrichment of 2d electrocatalysts for enhanced hydrogen evolution. ACS Nano 2023, 17, 1287-1297. 10. 1021/acsnano. 2c09423
[114]
Yuting Luo, Zhang, Shuqing; Pan, Haiyang; Xiao, Shujie; Guo, Zenglong; Tang Lei; Khan, Usman; Ding, Bao-Fu; Li Meng; Cai. Zhengyang; Zhao, Yue; Lv, Wei; Feng, Qingliang; Zou, Xiaolong; Lin, Junhao; Cheng, Hui-Ming; Liu, Bilu. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 2020, 14, 767-776. 10. 1021/acsnano. 9b07763
[115]
Yongmin He; Liu, Liren; Zhu Chao; Guo, Shasha, Golani, Prafful; Koo, Bonhyeong; Tang, Pengyi; Zhao, Zhiqiang; Xu. Manzhang; Zhu, Chao; Yu, Peng; Zhou, Xin; Gao, Caitian; Wang, Xuewen; Shi, Zude; Zheng, Lu; Yang, Jiefu; Shin, Byungha; Arbiol, Jordi; Duan, Huigao; Du, Yonghua; Heggen, Marc; Dunin-Borkowski, Rafal E. ; Guo, Wanlin; Wang, Qi Jie; Zhang, Zhuhua; Liu, Zheng. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nature Catalysis 2022, 5, 212-221. 10. 1038/s41929-022-00753-y
[116]
Xiao Liu, Jiang, Xingxing; Shao, Gonglei, Xiang, Haiyan; Li, Zhiwei; Jin, Yuanyuan; Chen Yang, Jiang, Huili; Li, Huimin; Shui, Jianglan; Feng, Yexin; Liu Song. Activating the electrocatalysis of MoS2 basal plane for hydrogen evolution via atomic defect configurations. Small 2022, 18, 2200601. https://doi.org/10.1002/smll.202200601
[117]
Yu Zhou, Pondick, Joshua V., Silva, Jose Luis, Woods, John M., Hynek, David J., Matthews. Grace; Shen, Xin; Feng, Qingliang; Liu, Wen; Lu, Zhixing; Liang, Zhixiu; Brena, Barbara; Cai, Zhao; Wu, Min; Jiao, Liying; Hu, Shu; Wang, Hailiang; Araujo, Carlos Moyses; Cha, Judy J. Unveiling the interfacial effects for enhanced hydrogen evolution reaction on MoS2/WTe2 hybrid structures. Small 2019, 15, 1900078. https://doi.org/10.1002/smll.201900078
[118]
Jianqiang Chen; Lu, Ning; Zhao, Yang; Huang, Jiazhao; Gan, Xiaojuan; Chen, Xuezhen; Yang, Zhenhong; Wen, Qunlei; Zhai, Tianyou; Liu, Youwen. On-chip microdevice unveils reactant enrichment effect dominated electrocatalysis activity in molecular-linked catalysts. Nano Letters 2022, 22, 10154-10162. 10. 1021/acs. nanolett. 2c04087
[119]
Dustin R. Cummins, Martinez, Ulises, Sherehiy, Andriy, Kappera, Rajesh, Martinez-Garcia, Alejandro, Schulze, Roland K., Jasinski, Jacek, Zhang Jing, Gupta. Ram K. ; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D. ; Sunkara, Mahendra K. ; Gupta, Gautam. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature Communications 2016, 7, 11857. 10. 1038/ncomms11857
[120]
Junhui Wang; Yan, Mengyu; Zhao, Kangning; Liao, Xiaobin; Wang, Peiyao; Pan. Xuelei; Yang, Wei; Mai, Liqiang. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Advanced Materials 2017, 29, 1604464. https://doi.org/10.1002/adma.201604464
[121]
F. L. Ling; Zhou, T. W.; Liu. X. Q. ; Kang, W. ; Zeng, W. ; Zhang, Y. X. ; Fang, L. ; Lu, Y. ; Zhou, M. Electric field tuned MoS2/metal interface for hydrogen evolution catalyst from first-principles investigations. Nanotechnology 2018, 29, 03LT01. 10. 1088/1361-6528/aa9eb5
[122]
Chuong V. Nguyen. Tuning the electronic properties and schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating. Superlattices and Microstructures 2018, 116, 79-87. https://doi.org/10.1016/ j.spmi.2018.02.012
[123]
Tuan V. Vu; Hieu, Nguyen V.; Thao, Le T. P.; Hieu, Nguyen N.; Phuc.Huynh V. ; Bui, H. D. ; Idrees, M. ; Amin, B. ; Duc, Le M. ; Nguyen, Chuong V. Tailoring the structural and electronic properties of an SnSe2/MoS2 van der waals heterostructure with an electric field and the insertion of a graphene sheet. Physical Chemistry Chemical Physics 2019, 21, 22140-22148. 10. 1039/C9CP04689E
[124]
Zegao Wang; Wu, Hong-Hui; Li, Qiang, Besenbacher, Flemming; Li, Yanrong; Zeng, Xiao Cheng; Dong, Mingdong. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Advanced Science 2020, 7, 1901382. https://doi.org/ 10.1002/advs.201901382
[125]
Jiazhao Huang, Zhuang, Jianqiang; Zhuo, Zhiwen; Liu, Huiqiao; Zhai, Tianyou, Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution, Angewandte Chemie International EditionZechao; Zhao, Yang; Chen, Youwen; Lu, Ning; Li, 2022, 61, e202203522. https://doi.org/10.1002/anie. 202203522
[126]
Hao Wang; Chen, Ding-Rui; Lin, You-Chen; Lin, Po-Han, Chang, Jui-Teng, Muthu, Jeyavelan, Hofmann, Mario, Hsieh, Ya-Ping. Enhancing the electrochemical activity of 2d materials edges through oriented electric fields. ACS Nano 2024, 18, 19828-19835. 10. 1021/acsnano. 4c06341
[127]
Shaobin Tang; Dang, Qian; Liu, Tianyong; Zhang, Shiyong; Zhou, Zhonggao; Li, Xiaokang; Wang, Xijun; Sharman, Edward; Luo, Yi; Jiang, Jun. Realizing a not-strong-not-weak polarization electric field in single-atom catalysts sandwiched by boron nitride and graphene sheets for efficient nitrogen fixation. Journal of the American Chemical Society 2020, 142, 19308-19315. 10. 1021/jacs. 0c09527
[128]
Jie Li; Chen, Shang; Quan, Fengjiao; Zhan, Guangming; Jia, Falong; Ai, Zhihui, Zhang, Lizhi. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020, 6, 885-901. 10. 1016/j. chempr. 2020. 01. 013
[129]
Daobin Liu; Li, Xiyu; Chen, Shuangming; Yan, Huan; Wang, Changda; Wu, Chuanqiang; Haleem, Yasir A. ; Duan, Sai; Lu, Junling; Ge, Binghui; Ajayan, Pulickel M. ; Luo, Yi; Jiang, Jun; Song, Li. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nature Energy 2019, 4, 512-518. 10. 1038/s41560-019-0402-6
[130]
Yanghang Pan; Wang, Xinzhu, Zhang, Weiyang; Tang, Lingyu; Mu, Zhangyan; Liu, Cheng; Tian, Bailin; Fei, Muchun; Sun, Yamei; Su. Huanhuan; Gao, Libo; Wang, Peng; Duan, Xiangfeng; Ma, Jing; Ding, Mengning. Boosting the performance of single-atom catalysts via external electric field polarization. Nature Communications 2022, 13, 3063. 10. 1038/s41467-022-30766-x
[131]
Jiang Qu; Li, Yang; Li, Fei; Li, Tianming; Wang, Xiaoyu; Yin, Yin; Ma, Libo; Schmidt, Oliver G. ; Zhu, Feng. Direct thermal enhancement of hydrogen evolution reaction of on-chip monolayer MoS2. ACS Nano 2022, 16, 2921-2927. 10. 1021/acsnano. 1c10030
[132]
Aamir Hassan Shah, Zhang, Zisheng, Huang, Zhihong; Wang, Sibo, Zhong, Guangyan; Wan, Chengzhang, Alexandrova, Anastassia N., Huang Yu; Duan, Xiangfeng. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nature Catalysis 2022, 5, 923-933. 10. 1038/s41929-022-00851-x
[133]
Teck L. Tan; Wang, Lin-Lin, Johnson. Duane D. ; Bai, Kewu. Hydrogen deposition on Pt(111) during electrochemical hydrogen evolution from a first-principles multiadsorption-site study. The Journal of Physical Chemistry C 2013, 117, 22696-22704. 10. 1021/jp405760z
[134]
David E. Ramaker; Roth, Christina. Nature of the intermediate binding sites in hydrogen oxidation/evolution over pt in alkaline and acidic media. ChemElectroChem 2015, 2, 1582-1594. https://doi.org/10.1002/celc.201500111
[135]
Satria Zulkarnaen Bisri, Shimizu, Sunao, Nakano, Masaki, Iwasa, Yoshihiro. Endeavor of iontronics: From fundamentals to applications of ion-controlled electronics. Advanced Materials 2017, 29, 1607054. https://doi.org/10.1002/adma. 201607054
[136]
Haiwei Du; Lin, Xi; Xu, Zhemi; Chu, Dewei. Electric double-layer transistors: A review of recent progress. Journal of Materials Science 2015, 50, 5641-5673. 10. 1007/s10853-015-9121-y
[137]
Ying Wang; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J. ; Zhang, Xiang. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550, 487-491. 10. 1038/nature24043
[138]
Yu Saito, Kasahara, Yuichi; Ye, Jianting, Iwasa, Yoshihiro, Nojima, Tsutomu. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409-413. 10. 1126/science. 1259440
[139]
D. Vanmaekelbergh, Houtepen, A. J., Kelly, J. J. Electrochemical gating: A method to tune and monitor the (opto)electronic properties of functional materials. Electrochimica Acta 2007, 53, 1140-1149. https://doi.org/ 10.1016/j.electacta.2007.02.045
[140]
Jin-Hui Zhong; Jin, Xi; Meng, Lingyan; Wang, Xiang; Su, Hai-Sheng; Yang, Zhi-Lin; Williams, Christopher T. ; Ren, Bin. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nature Nanotechnology 2017, 12, 132-136. 10. 1038/nnano. 2016. 241
[141]
Manuel Plaza. Huang, Xin; Ko, J. Y. Peter; Shen, Mei; Simpson, Burton H. ; Rodríguez-López, Joaquín; Ritzert, Nicole L. ; Letchworth-Weaver, Kendra; Gunceler, Deniz; Schlom, Darrell G. ; Arias, Tomás A. ; Brock, Joel D. ; Abruña, Héctor D. Structure of the photo-catalytically active surface of SrTiO3. Journal of the American Chemical Society 2016, 138, 7816-7819. 10. 1021/jacs. 6b03338
[142]
Xueli Zheng, Zhang Bo, De Luna, Phil, Liang, Yufeng, Comin, Riccardo, Voznyy, Oleksandr; Han, Lili. García De Arquer, F. Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J. ; He, Sisi; Xin, Huolin L. ; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft x-ray absorption. Nature Chemistry 2018, 10, 149-154. 10. 1038/nchem. 2886
[143]
Kanak Roy, Artiglia Luca, Van Bokhoven, Jeroen A. Ambient pressure photoelectron spectroscopy: Opportunities in catalysis from solids to liquids and introducing time resolution. ChemCatChem 2018, 10, 666-682. https://doi.org/10.1002/ cctc.201701522
[144]
Xu Lu; Zhu, Chongqin; Wu, Zishan; Xuan Jin, Francisco, Joseph S.; Wang, Hailiang. In situ observation of the ph gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. Journal of the American Chemical Society 2020, 142, 15438-15444. 10. 1021/jacs. 0c06779
[145]
N. M. Marković, Grgur, B. N.; Ross. P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. The Journal of Physical Chemistry B 1997, 101, 5405-5413. 10. 1021/ jp970930d
[146]
Tobias Reier, Oezaslan, Mehtap, Strasser, Peter. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysis 2012, 2, 1765-1772. 10. 1021/cs3003098
[147]
Kaiyue Zhu; Zhu, Xuefeng; Yang, Weishen. Application of in situ techniques for the characterization of nife-based oxygen evolution reaction (OER) electrocatalysts. Angewandte Chemie International Edition 2019, 58, 1252-1265. https://doi.org/10.1002/anie.201802923
[148]
Zahid Ali, Mushtaq M. Asim, Abbas, Yasir; Liu Wei; Wu, Zhanpeng. Inorganic nanocrystal-carbon composite derived from cross-linked gallic acid derivative of polyphosphazenes for the efficient oxygen evolution reaction. Carbon Letters 2023, 33, 737-749. 10. 1007/s42823-022-00455-2
[149]
Kexin Zhang; Zou, Ruqiang. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129. https://doi.org/10.1002/ smll.202100129
[150]
Feng Zeng, Mebrahtu, Chalachew; Liao, Longfei, Beine, Anna Katharina, Palkovits, Regina. Stability and deactivation of oer electrocatalysts: A review. Journal of Energy Chemistry 2022, 69, 301-329. https://doi.org/10.1016/ j.jechem.2022.01.025
[151]
Liang Chen; Hu, Liying; Xu, Chenxi; Yang, Lanyun; Wang, Wei, Huang, Junlin; Zhou, Minjie; Hou, Zhaohui.Preparation of self-supporting Co3S4/S-RGO film catalyst for efficient oxygen evolution reaction. Carbon Letters 2023, 33, 2087-2094. 10. 1007/s42823-023-00561-9
[152]
Peiyao Wang; Yan, Mengyu; Meng, Jiashen, Jiang, Gengping; Qu, Longbing; Pan, Xuelei; Liu, Jefferson Zhe; Mai, Liqiang. Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit. Nature Communications 2017, 8, 645. 10. 1038/s41467-017-00778-z
[153]
Bailin Tian; Shin, Hyeyoung; Liu, Shengtang; Fei, Muchun; Mu, Zhangyan; Liu, Cheng; Pan, Yanghang; Sun, Yamei, Goddard Iii, William A.; Ding. Mengning. Double-exchange-induced in situ conductivity in nickel-based oxyhydroxides: An effective descriptor for electrocatalytic oxygen evolution. Angewandte Chemie International Edition 2021, 60, 16448-16456. https://doi.org/10.1002/anie. 202101906
[154]
Huabin Zhang; Zhou, Wei; Dong, Juncai; Lu, Xue Feng; Lou, Xiong Wen. Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy & Environmental Science 2019, 12, 3348-3355. 10. 1039/ C9EE02787D
[155]
Zhiwei Fang; Peng, Lele; Qian, Yumin; Zhang, Xiao; Xie, Yujun; Cha, Judy J. ; Yu, Guihua. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. Journal of the American Chemical Society 2018, 140, 5241-5247. 10. 1021/jacs. 8b01548
[156]
Xin-Yao Yu; Feng, Yi; Guan, Buyuan; Lou, Xiong Wen; Paik, Ungyu. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science 2016, 9, 1246-1250. 10. 1039/ C6EE00100A
[157]
Yang Li; Dong, Zihao; Jiao, Lifang. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Advanced Energy Materials 2020, 10, 1902104. https://doi.org/10.1002/aenm.201902104
[158]
Zhichao Wang; Liu, Hongli; Ge, Ruixiang; Ren. Xiang; Ren, Jun; Yang, Dongjiang; Zhang, Lixue; Sun, Xuping. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catalysis 2018, 8, 2236-2241. 10. 1021/acscatal. 7b03594
[159]
Xunbiao Zhou; Liao, Xiaobin; Pan, Xuelei; Yan, Mengyu; He, Liang; Wu.Peijie; Zhao, Yan; Luo, Wen; Mai, Liqiang. Unveiling the role of surface P-O group in P-doped Co3O4 for electrocatalytic oxygen evolution by on-chip micro-device. Nano Energy 2021, 83, 105748. https://doi.org/10.1016/ j.nanoen.2021.105748
[160]
Weijia Gong, Zhang. Hongyu; Yang, Liu; Yang, Ya; Wang, Jiashuo; Liang, Heng. Core@shell mofs derived Co2P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER. Journal of Industrial and Engineering Chemistry 2022, 106, 492-502. https://doi.org/ 10.1016/j.jiec.2021.11.032
[161]
Rui Dang; Xu, Xiu-Feng; Xie, Meng-Meng.Fabrication of triangular Cu3P nanorods on Cu nanosheets as electrocatalyst for boosted electrocatalytic water splitting. Journal of Central South University 2022, 29, 3870-3883. 10. 1007/s11771-023-5243-6
[162]
Akihiko Kudo, Miseki Yugo. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38, 253-278. 10. 1039/B800489G
[163]
Vaishnavi Sharma, Kumar, Abhinandan, Singh, Pardeep, Verma, Praveen Kumar, Ahamad, Tansir, Thakur, Sourbh; Le, Quyet Van, Nguyen, Van-Huy; Khan. Aftab Aslam Parwaz; Raizada, Pankaj. Advanced strategies for modifying the water splitting performance of MoSe2 photocatalyst: A critical review of recent progress. Journal of Industrial and Engineering Chemistry 2023, 128, 55-65. https://doi.org/ 10.1016/j.jiec.2023.07.056
[164]
Josny Joy, Mathew Jinu, George, Soney C. Nanomaterials for photoelectrochemical water splitting - review. International Journal of Hydrogen Energy 2018, 43, 4804-4817. https://doi.org/10.1016/j.ijhydene.2018.01.099
[165]
Xin Li; Yu, Jiaguo; Low, Jingxiang; Fang, Yueping; Xiao Jing; Chen, Xiaobo. Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A 2015, 3, 2485-2534. 10. 1039/C4TA04461D
[166]
Hengcong Tao; Yan, Chao, Robertson, Alex W.; Gao, Yunnan; Ding, Jingjing, Zhang, Yuqin; Ma Tao; Sun, Zhenyu. N-doping of graphene oxide at low temperature for the oxygen reduction reaction. Chemical Communications 2017, 53, 873-876. 10. 1039/C6CC08776K
[167]
Qingying Jia, Ghoshal, Shraboni; Li, Jingkun, Liang, Wentao; Meng, Guangnan; Che, Haiying, Zhang, Shiming; Ma, Zi-Feng, Mukerjee, Sanjeev. Metal and metal oxide interactions and their catalytic consequences for oxygen reduction reaction. Journal of the American Chemical Society 2017, 139, 7893-7903. 10. 1021/jacs. 7b02378
[168]
N. P. Subramanian, Greszler, T. A., Zhang J.; Gu W.,Makharia R. Pt-oxide coverage-dependent oxygen reduction reaction (ORR) kinetics. Journal of the Electrochemical Society 2012, 159, B531. 10. 1149/2. 088205jes
[169]
Yao Wang; Li, Jing; Wei, Zidong. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A 2018, 6, 8194-8209. 10. 1039/ C8TA01321G
[170]
Mengning Ding, Zhong, Guangyan; Zhao, Zipeng, Huang, Zhihong; Li, Mufan; Shiu, Hui-Ying; Liu, Yuan, Shakir, Imran, Huang Yu; Duan, Xiangfeng. On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Central Science 2018, 4, 590-599. 10. 1021/acscentsci. 8b00082
[171]
Yamei Sun; Tian, Jingyi; Mu, Zhangyan; Tian, Bailin; Zhou, Qiulan; Liu, Cheng; Liu, Shengtang; Wu, Qiang; Ding, Mengning. Unravelling the critical role of surface nafion adsorption in Pt-catalyzed oxygen reduction reaction by in situ electrical transport spectroscopy. Science China Chemistry 2022, 65, 2290-2298. 10. 1007/s11426-022-1428-6
[172]
Zhangyan Mu; Han, Na; Xu, Dan; Tian, Bailin; Wang, Fangyuan; Wang, Yiqi; Sun, Yamei; Liu, Cheng; Zhang, Panke; Wu, Xuejun; Li, Yanguang; Ding, Mengning. Critical role of hydrogen sorption kinetics in electrocatalytic CO2reduction revealed by on-chip in situ transport investigations. Nature Communications 2022, 13, 6911. 10. 1038/s41467-022-34685-9
[173]
Mengning Ding; Shiu, Hui-Ying; Li, Shiue-Lin; Lee, Calvin K.; Wang, Gongming; Wu, Hao, Weiss, Nathan O., Young, Thomas D., Weiss, Paul S.; Wong, Gerard C. L., Nealson, Kenneth H., Huang Yu; Duan, Xiangfeng. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in shewanella and geobacter. ACS Nano 2016, 10, 9919-9926. 10. 1021/acsnano. 6b03655
[174]
Shengtang Liu; Wang, Chun; Wu, Jianghua; Tian, Bailin; Sun, Yamei; Lv, Yang; Mu, Zhangyan; Sun, Yuxia; Li, Xiaoshan; Wang, Fangyuan; Wang, Yiqi; Tang, Lingyu; Wang, Peng; Li, Yafei; Ding, Mengning. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state. ACS Catalysis 2021, 11, 12476-12484. 10. 1021/acscatal. 1c02495
[175]
Jing Zhang; Tian, Xiaoyin; Liu. Mingjie; Guo, Hua; Zhou, Jiadong; Fang, Qiyi; Liu, Zheng; Wu, Qin; Lou, Jun. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. Journal of the American Chemical Society 2019, 141, 19269-19275. 10. 1021/jacs. 9b02501
[176]
James K. Fredrickson, Romine, Margaret F., Beliaev, Alexander S., Auchtung, Jennifer M., Driscoll, Michael E., Gardner, Timothy S., Nealson, Kenneth H., Osterman, Andrei L., Pinchuk, Grigoriy; Reed, Jennifer L., Rodionov, Dmitry A., Rodrigues, Jorge L. M., Saffarini, Daad A., Serres, Margrethe H., Spormann, Alfred M., Zhulin, Igor B., Tiedje, James M. Towards environmental systems biology of shewanella. Nature Reviews Microbiology 2008, 6, 592-603. 10. 1038/ nrmicro1947
[177]
Korneel Rabaey, Rozendal, René A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nature Reviews Microbiology 2010, 8, 706-716. 10. 1038/nrmicro2422
[178]
Nikhil S. Malvankar, Vargas, Madeline, Nevin, Kelly P., Franks, Ashley E., Leang, Ching; Kim, Byoung-Chan, Inoue, Kengo, Mester, Tünde, Covalla, Sean F., Johnson, Jessica P., Rotello, Vincent M., Tuominen, Mark T., Lovley, Derek R. Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology 2011, 6, 573-579. 10. 1038/nnano. 2011. 119
[179]
Bingqian Liu; Zhu, Qin; Pan, Yanghang; Huang, Futao; Tang, Lingyu; Liu, Cheng; Cheng, Zheng; Wang, Peng; Ma, Jing; Ding, Mengning. Single-atom tailoring of two-dimensional atomic crystals enables highly efficient detection and pattern recognition of chemical vapors. ACS Sensors 2022, 7, 1533-1543. 10. 1021/acssensors. 2c00356
[180]
Jiayu Wan; Bao, Wenzhong; Liu Yang; Dai, Jiaqi; Shen Fei; Zhou, Lihui; Cai, Xinghan, Urban, Daniel; Li, Yuanyuan, Jungjohann, Katherine, Fuhrer, Michael S.; Hu, Liangbing. In situ investigations of Li-MoS2 with planar batteries. Advanced Energy Materials 2015, 5, 1401742. https://doi.org/10.1002/ aenm.201401742
[181]
Matthias Kühne, Paolucci, Federico, Popovic, Jelena, Ostrovsky, Pavel M., Maier, Joachim; Smet, Jurgen H. Ultrafast lithium diffusion in bilayer graphene. Nature Nanotechnology 2017, 12, 895-900. 10. 1038/nnano. 2017. 108
[182]
Nathan S. Lewis. Toward cost-effective solar energy use. Science 2007, 315, 798-801. 10. 1126/science. 1137014
[183]
Michael Grätzel. Photoelectrochemical cells. Nature 2001, 414, 338-344. 10. 1038/35104607
[184]
Wendy U. Huynh, Dittmer, Janke J., Alivisatos A. Paul. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425-2427. 10. 1126/science. 1069156
[185]
Matt Law, Greene, Lori E., Johnson, Justin C., Saykally, Richard; Yang, Peidong. Nanowire dye-sensitized solar cells. Nature Materials 2005, 4, 455-459. 10. 1038/nmat1387
[186]
Jason B. Baxter, Aydil, Eray S. Nanowire-based dye-sensitized solar cells. Applied Physics Letters 2005, 86, 053114. 10. 1063/1. 1861510
[187]
Antonio Luque, Martí Antonio, Nozik, Arthur J. Solar cells based on quantum dots: Multiple exciton generation and intermediate bands. MRS Bulletin 2007, 32, 236-241. 10. 1557/mrs2007. 28
[188]
Brendan M. Kayes, Atwater, Harry A., Lewis, Nathan S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics 2005, 97, 114302. 10. 1063/1. 1901835
[189]
Yong Zhang; Wang, Mascarenhas, Angelo. “Quantum coaxial cables” for solar energy harvesting. Nano Letters 2007, 7, 1264-1269. 10. 1021/nl070174f
[190]
Devens Gust, Moore, Thomas A., Moore, Ana L. Mimicking photosynthetic solar energy transduction. Accounts of Chemical Research 2001, 34, 40-48. 10. 1021/ar9801301
[191]
Matěj Velický, Bissett, Mark A., Woods, Colin R.; Toth, Peter S., Georgiou, Thanasis, Kinloch, Ian A., Novoselov, Kostya S., Dryfe, Robert A. W. Photoelectrochemistry of pristine mono- and few-layer MoS2. Nano Letters 2016, 16, 2023-2032. 10. 1021/acs. nanolett. 5b05317
[192]
Yan Wang, Udyavara, Sagar, Neurock, Matthew, Frisbie C, Daniel.Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2electrodes. Nano Letters 2019, 19, 6118-6123. 10. 1021/acs. nanolett. 9b02079
[193]
Dian-Yi Huang; Ma, Yan; Rao, Qiu-Hua; Yi, Wei; Yang, Wen-Tao; Li, Peng. A new multi-objective optimization model of multi-layer prestressed lining cavern for compressed air energy storage. Journal of Central South University 2023, 30, 3855-3866. 10. 1007/s11771-023-5460-z
[194]
Won Jun Ahn; Park, Byeong Hyeon; Seo. Sang Wan; Kim, Seok; Im, Ji Sun.Designing of 3d porous silicon/carbon complex anode based on metal-organic frameworks for lithium-ion battery. Carbon Letters 2023, 33, 2349-2361. 10. 1007/s42823-023-00572-6
[195]
Beum Jin Park; Lee, Hongdae; Kim, Jiyoung, Seok Park, Ho. Hierarchical cosx/graphene/carbon nanotube hybrid architectures for bifunctional electrocatalysts in zinc-air battery. Journal of Industrial and Engineering Chemistry 2022, 109, 413-421. https://doi.org/10.1016/j.jiec.2022.02.026
[196]
Jun-Wei Han; Chen, Ling-Ling, Zhong, Xue-Hu; Wei, Xu-Yi; Qin, Wen-Qing. A promising method for recovery of LiMn2O4and graphite from waste lithium-ion batteries: Roasting enhanced flotation. Journal of Central South University 2022, 29, 2873-2887. 10. 1007/s11771-022-5127-1
[197]
Naeun Ha, Jeong, Seo Gyeong; Lim, Chaehun; Ha, Seongmin; Min, Chung Gi; Choi, Yusong; Lee, Young-Seak. Preparation and electrochemical characteristics of waste-tire char-based CFx for lithium-ion primary batteries. Carbon Letters 2023, 33, 1013-1018. 10. 1007/s42823-023-00488-1
[198]
Byoungwoo Kang, Ceder, Gerbrand. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190-193. 10. 1038/nature07853
[199]
J. M. Tarascon, Armand. M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367. 10. 1038/35104644
[200]
Kisuk Kang; Meng, Ying Shirley, Bréger, Julien; Grey, Clare P., Ceder, Gerbrand. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977-980. 10. 1126/science. 1122152
[201]
Xiaobin Liao; Zhao, Yunlong; Wang. Junhui; Yang, Wei; Xu, Lin; Tian, Xiaocong; Shuang, Yi; Owusu, Kwadwo Asare; Yan, Mengyu; Mai, Liqiang. MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Research 2018, 11, 2083-2092. 10. 1007/s12274-017-1826-6
[202]
Lifen Wang; Xu, Zhi; Wang, Wenlong; Bai, Xuedong. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. Journal of the American Chemical Society 2014, 136, 6693-6697. 10. 1021/ja501686w
[203]
Dan Sun; Luo, Bin; Wang, Haiyan; Tang, Yougen; Ji, Xiaobo; Wang, Lianzhou. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial coulombic efficiency. Nano Energy 2019, 64, 103937. https://doi.org/10.1016/j.nanoen.2019.103937
[204]
Matthias Kühne, Börrnert, Felix, Fecher Sven, Ghorbani-Asl, Mahdi, Biskupek, Johannes, Samuelis, Dominik, Krasheninnikov, Arkady V., Kaiser Ute; Smet, Jurgen H. Reversible superdense ordering of lithium between two graphene sheets. Nature 2018, 564, 234-239. 10. 1038/s41586-018-0754-2
[205]
Sen Wang; Wu.Zhong-Shuai; Zhou, Feng; Shi, Xiaoyu; Zheng, Shuanghao; Qin, Jieqiong; Xiao, Han; Sun, Chenglin; Bao, Xinhe. All-solid-state high-energy planar hybrid micro-supercapacitors based on 2d VN nanosheets and Co(OH)2nanoflowers. npj 2D Materials and Applications2018, 2, 7. 10. 1038/s41699-018-0052-8
[206]
Xiaocong Tian; Shi, Mengzhu; Xu, Xu; Yan, Mengyu; Xu, Lin, Minhas-Khan, Aamir; Han, Chunhua; He, Liang; Mai, Liqiang. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Advanced Materials 2015, 27, 7476-7482. https://doi.org/10.1002/adma.201503567
[207]
Yuanjing Lin; Gao, Yuan; Fan, Zhiyong. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Advanced Materials 2017, 29, 1701736. https://doi.org/ 10.1002/adma.201701736
[208]
Shuang Liu; Wang, Enhui; Liu, Shichun; Guo, Chunyu; Wang, Hailong; Yang Tao; Hou, Xinmei. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor. Journal of Materials Science & Technology 2022, 110, 178-186. https://doi.org/10.1016/j.jmst.2021.09.012
[209]
Jun-Ke Ou, Zhang, Hong-Wei; Lei Ying; Li, Kai-Yang; Li Bo; Deng, Hai-Xin; Wang Hao; Zou, Liang. Buckwheat core derived nitrogen- and oxygen-rich controlled porous carbon for high-performance supercapacitors. Journal of Central South University 2023, 30, 419-433. 10. 1007/s11771-023-5249-0
[210]
Yani Yan; Zhou, Yi; Li, Yongfeng; Liu, Yanzhen. The new focus of energy storage: Flexible wearable supercapacitors. Carbon Letters 2023, 33, 1461-1483. 10. 1007/s42823-023-00554-8
[211]
Patrice Simon, Gogotsi Yury. Materials for electrochemical capacitors. Nature Materials 2008, 7, 845-854. 10. 1038/nmat2297
[212]
Nana Amponsah Kyeremateng, Brousse, Thierry; Pech, David. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology 2017, 12, 7-15. 10. 1038/nnano. 2016. 196
[213]
Hui Pan; Wang, Dawei; Peng.Qingfa; Ma, Jun; Meng, Xin; Zhang, Yaopeng; Ma, Yuning; Zhu, Shenmin; Zhang, Di. High-performance microsupercapacitors based on bioinspired graphene microfibers. ACS Applied Materials & Interfaces 2018, 10, 10157-10164. 10. 1021/acsami. 8b01128
[214]
Shuanghao Zheng; Ma, Jiaming; Wu. Zhong-Shuai; Zhou, Feng; He, Yan-Bing; Kang, Feiyu; Cheng, Hui-Ming; Bao, Xinhe. All-solid-state flexible planar lithium ion micro-capacitors. Energy & Environmental Science 2018, 11, 2001-2009. 10. 1039/C8EE00855H
[215]
Yanjuan Yang; He, Liang; Tang. Chunjuan; Hu, Ping; Hong, Xufeng; Yan, Mengyu; Dong, Yixiao; Tian, Xiaocong; Wei, Qiulong; Mai, Liqiang. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Research 2016, 9, 2510-2519. 10. 1007/s12274-016-1137-3
[216]
Xufeng Hong; He, Liang; Ma. Xinyu; Yang, Wei; Chen, Yiming; Zhang, Lei; Yan, Haowu; Li, Zhaohuai; Mai, Liqiang. Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Research 2017, 10, 3743-3753. 10. 1007/s12274-017-1587-2
[217]
J. K. Nørskov, Bligaard T., Rossmeisl J., Christensen. C. H. Towards the computational design of solid catalysts. Nature Chemistry 2009, 1, 37-46. 10. 1038/nchem. 121

Footnotes

Acknowledgments

S.L. gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 22175060). H. X, acknowledges support from the Hunan Provincial Department of Education project (No. 24C0264). T. H. acknowledges support from the U.S. National Science Foundation (Award No. 2425229). T. L. acknowledges support from Central South University Research Programme of Advanced Interdisciplinary Studies (Grant No. 2023QYJC026), J. J. acknowledges support from the National Natural Science Foundation of China (No. 62004143), the Key R&D Program of Hubei Province (No. 2022BAA084), and the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (LCX202404).

RIGHTS & PERMISSIONS

© 2025 This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(12426 KB)

Accesses

Citation

Detail

Sections
Recommended

/