Selective oxygen vacancy engineering for shrinking the potential barrier of S-scheme heterojunction toward highly efficient photocatalytic CO2 conversion

Yue Huang, Jinfeng Zhang, Olim Ruzimuradov, Shavkat Mamatkulov, Kai Dai, Jingxiang Low

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250103.

PDF(1298 KB)
PDF(1298 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (1) : 20250103. DOI: 10.63823/20250103
Research article

Selective oxygen vacancy engineering for shrinking the potential barrier of S-scheme heterojunction toward highly efficient photocatalytic CO2 conversion

Author information +
History +

Abstract

The construction of S-scheme heterojunction represents a simple yet effective strategy for enhancing photogenerated charge carrier separation and optimizing the reduction and oxidation capability of the photocatalytic system. However, precise tuning of the internal electric field for optimizing charge carrier migration across the heterojunction remains challenging. Herein, we present a novel defect engineering approach to modulate the potential barrier in S-scheme heterojunctions through strategic oxygen vacancy introduction. Specifically, we first selectively introduce oxygen vacancies on Bi2WO6, followed by coupling with g-C3N4 to form oxygen-deficient Bi2WO6/g-C3N4 (OVs-BWO-CN) S-scheme heterojunction. Surprisingly, the selective oxygen vacancy engineering on OVs-BWO cannot only preserve the features of common oxygen vacancies, but also shrink the potential barrier formed between OVs-BWO and CN. This reduction in potential barrier facilitates enhanced charge carrier migration across the heterojunction interface. As a direct consequence of this optimized charge transfer, the CN/OVs-BWO heterojunction demonstrates exceptional photocatalytic CO2 conversion performance, reaching a CO production rate of 48.65 μmol h−1 g−1. Such a work on selective oxygen vacancy engineering for optimizing potential barrier can provide important guidelines for photocatalysis.

Key words

S-scheme heterojunction / Bi2WO6 / g-C3N4 / Oxygen-deficient / Photocatalytic CO2 reduction

Cite this article

Download Citations
Yue Huang , Jinfeng Zhang , Olim Ruzimuradov , et al . Selective oxygen vacancy engineering for shrinking the potential barrier of S-scheme heterojunction toward highly efficient photocatalytic CO2 conversion[J]. Composite Functional Materials. 2025, 1(1): 20250103 https://doi.org/10.63823/20250103

References

[1]
S. Mahmoud, J. Yu, G. Liu, J. Mietek. Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews 2022, 122, 10484-10537. https://doi.org/10.1021/acs.chemrev.1c00473.
[2]
T. Takata, L. Lin, T. Hisatomi, K. Domen. Best Practices for Assessing Performance of Photocatalytic Water Splitting Systems. Advanced Materials 2024, 36, e2406848. https://doi.org/10.1002/adma.202406848.
[3]
C. Bie, L. Wang, J. Yu. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567-1574. https://doi.org/10.1016/j.chempr.2022.04.013
[4]
L. Cheng, B. Zhou, M. Qi, X. Sun, S. Dong, Y. Sun, B. Dong, L. Wang, Y. Yang. A coating strategy on titanium implants with enhanced photodynamic therapy and CO-based gas therapy for bacterial killing and inflammation regulation. Chinese Chemical Letters 2024, 35, 108648. https://doi.org/10.1016/j.cclet.2023.108648.
[5]
C. Wu, C. Nathaniel, L. Chern-Hooi, W. Liu, M. Garret, B. Cyrille. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chemical Reviews 2022, 122, 5476-5518. https://doi.org/10.1021/acs.chemrev.1c00409.
[6]
J. Wang, Z. Wang, J. Zhang, S. Mamatkulov, K. Dai, O. Ruzimuradov, J. Low. Two-Dimensional High-Entropy Selenides for Boosting Visible-Light-Driven Photocatalytic Performance. ACS Nano 2024, 18, 20740-20750. https://doi.org/10.1021/acsnano.4c06954.
[7]
C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec. In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation. Nature Communications 2024, 15, 1313. https://doi.org/10.1038/s41467-024-45604-5.
[8]
Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai. Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica 2024, 40, 2405016. https://doi.org/10.3866/pku.Whxb202405016.
[9]
G. Jia, Y. Zhang, J.C. Yu, Z. Guo. Asymmetric Atomic Dual-Sites for Photocatalytic CO2 Reduction. Advanced Materials 2024, 36, e2403153. https://doi.org/10.1002/adma.202403153.
[10]
X. Jin, X. Li, L. Dong, B. Zhang, D. Liu, S. Hou, Y. Zhang, F.-M. Zhang, B. Song. Enhancement and inhibition of photocatalytic hydrogen production by fine piezoelectric potential tuning over piezo-photocatalyst. Nano Energy 2024, 123, 109341. https://doi.org/10.1016/j.nanoen.2024.109341.
[11]
Y. Huang, K. Dai, J.F. Zhang, D. Graham. Photocatalytic CO2 conversion of W18O49/CdSe‐diethylenetriamine with high charge transfer efficiency: Synergistic effect of LSPR effect and S‐scheme heterojunction. Chinese Journal of Catalysis 2022, 43, 2539-2547. https://doi.org/10.1016/S1872-2067(21)64024-X.
[12]
B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang. CdS decorated resorcinol-formaldehyde spheres as an inorganic/organic S-scheme photocatalyst for enhanced H2O2 production. Journal of Materials Science & Technology 2023, 162, 90-98. https://doi.org/10.1016/j.jmst.2023.03.054.
[13]
H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai. One-step synthesis of seamlessly contacted non-precious metal cocatalyst modified CdS hollow nanoflowers spheres for photocatalytic hydrogen production. Journal of Materials Science & Technology 2024, 195, 146-154. https://doi.org/10.1016/j.jmst.2023.11.081.
[14]
X. Yuan, C. Wang, Lorenzo Vallan, Anh Thy Bui, Gediminas Jonusauskas, Nathan D, McClenaghan, Chloé Grazon, Sabrina Lacomme, Cyril Brochon, Hynd Remita, Georges Hadziioannou E, Cloutet*. Organic Conjugated Trimers with Donor-Acceptor-Donor Structures for Photocatalytic Hydrogen Generation Application. Advanced Functional Materials 2023, 33, 2211730. https://doi.org/10.1002/adfm.202211730.
[15]
E. Cui, Y. Lu, Z. Li, Z. Chen, C. Ge, J. Jiang. Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters 2025, 36, 110288. https://doi.org/10.1016/j.cclet.2024.110288.
[16]
Z. Zhao, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, C. Liang. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Advanced Functional Materials 2023, 33, 2214470. https://doi.org/10.1002/adfm.202214470.
[17]
W. Jin, C.Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg, H.Y. Wu, Z. Wu, S.Y. Jeong, F. Pitzalis, T. Liu, Q. He, Q. Li, J.D. Huang, R. Kroon, M. Heeney, H.Y. Woo, A. Mura, A. Motta, A. Facchetti, M. Fahlman, M.A. Loi, S. Fabiano. Photocatalytic doping of organic semiconductors. Nature 2024, 630, 96-101. https://doi.org/10.1038/s41586-024-07400-5.
[18]
S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen. Constructing Cd0. 5Zn0. 5S/Bi2WO6 S-scheme Heterojunction for Boosted Photocatalytic Antibiotic Oxidation and Cr(VI) Reduction. Advanced Powder Materials 2023, 2, 100073. https://doi.org/10.1016/j.apmate.2022.100073.
[19]
S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu. Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0. 5Cd0. 5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica 2024, 40, 2307016. https://doi.org/10.3866/pku.Whxb202307016.
[20]
E. Zhou, X. Zhang, L. Zhu, E. Chai, J. Chen, J. Li, D. Yuan, L. Kang, Q. Sun, Y. Wang. Ultrathin covalent organic framework nanosheets for enhanced photocatalytic water oxidation. Science Advances 2024, 10, eadk8564. https://doi.org//10.1126/sciadv.adk8564.
[21]
J. Wang, C. Yang, L. Mao, X. Cai, Z. Geng, H. Zhang, J. Zhang, X. Tan, J. Ye, T. Yu. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4. Advanced Functional Materials 2023, 33, 2213901. https://doi.org/10.1002/adfm.202213901.
[22]
S. Xiong, S. Bao, W. Wang, J. Hao, Y. Mao, P. Liu, Y. Huang, Z. Duan, Y. Lv, D. Ouyang. Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2022, 305, 121026. https://doi.org/10.1016/j.apcatb.2021.121026.
[23]
X. Yang, X. Lan, Y. Zhang, H. Li, G. Bai. Rational design of MoS2@COF hybrid composites promoting C-C coupling for photocatalytic CO2 reduction to ethane. Applied Catalysis B: Environmental 2023, 325. https://doi.org/10.1016/j.apcatb.2023.122393.
[24]
L. Zeng, J.-W. Chen, L. Zhong, W. Zhen, Y.Y. Tay, S. Li, Y.-G. Wang, L. Huang, C. Xue. Synergistic Effect of Ru-N4 Sites and Cu-N3 Sites in Carbon Nitride for Highly Selective Photocatalytic Reduction of CO2 to Methane. Applied Catalysis B: Environmental 2022, 307, 121154. https://doi.org/10.1016/j.apcatb.2022.121154.
[25]
S. Kim, X. Zhou, Y. Li, Q. Yang, X. Liu, R. Graf, P.W.M. Blom, C.T.J. Ferguson, K. Landfester. Size-Dependent Photocatalytic Reactivity of Conjugated Microporous Polymer Nanoparticles. Advanced Materials 2024, 36, e2404054. https://doi.org/10.1002/adma.202404054.
[26]
Chang Cheng, Bowen He, Jiajie Fan, Bei Cheng, Shaowen Cao, J. Yu. An Inorganic/Organic S-Scheme Heterojunction H2 Production Photocatalyst and its Charge Transfer Mechanism. Advanced Materials 2021, 2100317. https://doi.org/10.1002/adma.202100317.
[27]
F. Li, G. Zhu, J. Jiang, L. Yang, F. Deng, Arramel, X. Li. A review of updated S-scheme heterojunction photocatalysts. Journal of Materials Science & Technology 2024, 177, 142-180. https://doi.org/10.1016/j.jmst.2023.08.038.
[28]
M. Cai, Y. Wei, Y. Li, X. Li, S. Wang, G. Shao, P. Zhang. 2D semiconductor nanosheets for solar photocatalysis. EcoEnergy 2023, 1, 248-295. https://doi.org/10.1002/ece2.16.
[29]
J. Zhou, Q. Li, X. Hu, W. Wei, X. Ji, G. Kuang, L. Zhou, L. Chen, Y. Chen. Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters 2024, 35, 109143. https://doi.org/10.1016/j.cclet.2023.109143.
[30]
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu. Ultrathin 2D/2D WO3/g-C3N4 Step-Scheme H2-Production Photocatalyst. Applied Catalysis B-environmental 2019, 243, 556-565. https://doi.org/10.1016/j.apcatb.2018.11.011.
[31]
C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson. K. Dai. Chalcogenide-based S-scheme heterojunction photocatalysts. Chinese Journal of Catalysis 2024, 63, 81-108. https://doi.org/10.1016/s1872-2067(24)60072-0.
[32]
B. He, Z. Wang, P. Xiao, T. Chen, J. Yu, L. Zhang. Cooperative coupling of H2O2 production and organic synthesis over floatable polystyrene sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Advanced Materials 2022, 34, 2203225. https://doi.org/10.1002/adma.202203225.
[33]
Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie. A review on ZnO-based S-scheme heterojunction photocatalysts. Chinese Journal of Catalysis 2023, 52, 32-49. https://doi.org/10.1016/s1872-2067(23)64502-4.
[34]
H. Zhang, M. Cui, Y. Lv, Y. Rao, Y. Huang. A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters 2025, 36, 110108. https://doi.org/10.1016/j.cclet.2024.110108.
[35]
H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan. Interface Chemical Bond Enhanced Ions Intercalated Carbon Nitride/CdSe‐Diethylenetriamine S‐Scheme Heterojunction for Photocatalytic H2O2 Synthesis in Pure Water. Advanced Functional Materials 2024, 34, 2315426. https://doi.org/10.1002/adfm.202315426.
[36]
W. Yu. C. Bie. Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica 2024, 40, 2307022. https://doi.org/10.3866/pku.Whxb202307022.
[37]
K. Su, L. Zheng, M. Liu, J. Gao, Z. Shi, C. Chen, Y. Li, J. He, M. Peng. Oxygen Vacancies Regulated S-Scheme Charge Transport Route in BiVO4-OVs/g-C3N4 Heterojunction for Enhanced Photocatalytic Performance. Small 2024, 20, e2405551. https://doi.org/10.1002/smll.202405551.
[38]
J. Cheng, B. Cheng, J. Xu, J. Yu, S. Cao. Organic-inorganic S-scheme heterojunction photocatalysts: Design, synthesis, applications, and challenges. eScience 2024, 100354. https://doi.org/10.1016/j.esci.2024.100354.
[39]
W. Gao, G. Li, Q. Wang, L. Zhang, K. Wang, S. Pang, G. Zhang, L. Lv, X. Liu, W. Gao, L. Sun, Y. Xia, Z. Ren, P. Wang. Ultrathin porous Bi2WO6 with rich oxygen vacancies for promoted adsorption-photocatalytic tetracycline degradation. Chemical Engineering Journal 2023, 464, 142694. https://doi.org/10.1016/j.cej.2023.142694.
[40]
X. Xu, C. Shao, J. Zhang, Z. Wang, K. Dai. Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica 2024, 40, 2309031. https://doi.org/10.3866/pku.Whxb202309031.
[41]
C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li. An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(VI). Acta Physico-Chimica Sinica 2024, 40, 2307045. https://doi.org/10.3866/pku.Whxb202307045.
[42]
C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu. Exploring photogenerated charge carrier transfer in semiconductor/metal junctions using Kelvin probe force microscopy. Journal of Materials Science & Technology 2024, 173, 11-19. https://doi.org/10.1016/j.jmst.2023.07.019.
[43]
C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang. Advancements in S-scheme heterojunction materials for photocatalytic environmental remediation. Journal of Materials Science & Technology 2024, 169, 182-198. https://doi.org/10.1016/j.jmst.2023.06.011.
[44]
Z. Zhang, X. Li, H. Tang, J. Wu, C. Yao, K. Li. Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters 2024, 35, 109700. https://doi.org/10.1016/j.cclet.2024.109700.
[45]
L. Zhang, J. Zhang, J. Yu, H. Garcia. Charge-transfer dynamics in S-scheme photocatalyst. Nature reviews chemistry 2025, 9, 328-342. https://doi.org/10.1038/s41570-025-00698-3.
[46]
Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai. In2O3/Bi19Br3S27 S-scheme heterojunction with enhanced photocatalytic CO2 reduction. Science China Materials 2024, 67, 514-523. https://doi.org/10.1007/s40843-023-2725-y.
[47]
J. Yu, X. Yao, P. Su, S. Wang, D. Zhang, B. Ge, X. Pu. Construction of Cu3Mo2O9/Mn0. 3Cd0. 7S S-Scheme Heterojunction for Photocatalytic Hydrogen Production via Water Splitting. Journal of Liaocheng University (Natural Science Edition) 2024, 37(1), 52-61. https://doi.org/10.19728/j.issn1672-6634.2023090011.
[48]
K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li. Interface-induced charge transfer pathway switching of a Cu2O-TiO2 photocatalyst from p-n to S-scheme heterojunction for effective photocatalytic H2 evolution. Journal of Materials Science & Technology 2024, 193, 98-106. https://doi.org/10.1016/j.jmst.2024.01.034.
[49]
L. Hao, R. Shen, C. Qin, N. Li, H. Hu, G. Liang, X. Li. Regulating local polarization in truxenone-based covalent organic frameworks for boosting photocatalytic hydrogen evolution. Science China Materials 2024, 67, 504-513. https://doi.org/10.1007/s40843-023-2747-6.
[50]
Z. Huang, C. Guo, Q. Zheng, H. Lu, P. Ma, Z. Fang, P. Sun, X. Yi, Z. Chen. Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters 2024, 35, 109580. https://doi.org/10.1016/j.cclet.2024.109580.
[51]
Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang. 3D ordered macroporous sulfur-doped g-C3N4/TiO2 S-scheme photocatalysts for efficient H2O2 production in pure water. Journal of Materials Science & Technology 2023, 162, 1-10. https://doi.org/10.1016/j.jmst.2023.03.045.
[52]
H. Yuan, X. Sun, R. Li, W. Shi, F. Guo. Achieving High-Efficient Broad Spectrum Driven Photo-Fenton Degradation of Tetracycine via Carbon Dots Modified NiFe2O4 Nanoparticles. Journal of Liaocheng University (Natural Science Edition) 2024, 37(2), 69-79. https://doi.org/10.19728/j.issn1672-6634.2023080004.
[53]
C. Yang, Q. Rong, F. Shi, M. Cao, G. Li, Y. Xin, W. Zhang, G. Zhang. Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters 2024, 35, 109767. https://doi.org/10.1016/j.cclet.2024.109767.
[54]
L. Liu, Z. Wang, J. Zhang, O. Ruzimuradov, K. Dai, J. Low. Tunable Interfacial Charge Transfer in a 2D-2D Composite for Efficient Visible-Light-Driven CO2 Conversion. Advanced Materials 2023, 35, e2300643. https://doi.org/10.1002/adma.202300643.
[55]
B.P. Jacqueline, K. Michael, J. Henrik, B. Matthias, H. Dirk, B.c. Angelika. Water reduction with visible light:Synergy between optical transitions and electron transfer in Au-TiO2 catalysts visualized by in situ EPR spectroscopy. Angewandte Chemie International Edition 2013, 52, 11420-11424. https://doi.org/10.1002/anie.201306504.
[56]
A.C. Ferrari, D.M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 2013, 8, 235-246. https://doi.org/10.1038/nnano.2013.46.
[57]
H. Yang, Z. Wang, J. Zhang, K. Dai, J. Low. Superposition of bulk and interface electric field for boosting charge transfer in Bi2MoO6/Bi19Br3S27 S-scheme heterojunctions. Journal of Materiomics 2025, 11, 100996. https://doi.org/10.1016/j.jmat.2024.100996.
[58]
Z. Zhou, H. Yao, Y. Wu, T. Li, N. Tsubaki, Z. Jin. Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica 2024, 40, 2312010. https://doi.org/10.3866/pku.Whxb202312010.
[59]
B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study. Chinese Journal of Catalysis 2023, 51, 204-215. https://doi.org/10.1016/s1872-2067(23)64466-3.
[60]
M. Gao, Z. Sun, Y. Gong, G. Yu, Y. Feng. Construction of Bi2O2(OH)Cl/Bi/Bi2O3 Heterojunction with Enhanced Photocatalytic H2O2 Production Performance. Journal of Liaocheng University (Natural Science Edition) 2024, 37(6), 39-48. https://doi.org/10.19728/j.issn1672-6634.2024060002.
[61]
J. Yu, J. Huang, R. Li, Y. Li, G. Liu, X. Xu. Fluorine-expedited nitridation of layered perovskite Sr2TiO4 for visible-light-driven photocatalytic overall water splitting. Nature Communications 2025, 16, 361. https://doi.org/10.1038/s41467-024-55748-z.
[62]
X. Hu, J. Yu, L. Sun, L. Zhang, W. Zhou, D. Yan, X. Wang. Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters 2024, 35, 109466. https://doi.org/10.1016/j.cclet.2023.109466.
[63]
K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li. Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica 2024, 40, 2310013. https://doi.org/10.3866/pku.Whxb202310013.
[64]
J. Yan, J. Zhang. Charge transfer kinetic analysis of S-scheme heterojunction by femtosecond transient absorption spectrum. Journal of Materials Science & Technology 2024, 193, 18-21. https://doi.org/10.1016/j.jmst.2023.12.054.
[65]
Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation. Chinese Journal of Catalysis 2023, 53, 123-133. https://doi.org/10.1016/s1872-2067(23)64514-0.
[66]
S. Ding, J. Duan, S. Chen. Recent advances of metal suboxide catalysts for carbon‐neutral energy applications. EcoEnergy 2024, 2, 45-82. https://doi.org/10.1002/ece2.26.
[67]
B. Zhao, W. Zhong, F. Chen, P. Wang, C. Bie, H. Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application. Chinese Journal of Catalysis 2023, 52, 127-143. https://doi.org/10.1016/s1872-2067(23)64491-2.
[68]
J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng. ZnIn2S4/MOF S-scheme photocatalyst for H2 production and its femtosecond transient absorption mechanism. Journal of Materials Science & Technology 2024, 197, 183-193. https://doi.org/10.1016/j.jmst.2024.02.012.
[69]
S.Y. Yuan, T.T. Li, J.Y. Cui, J.K. Sun, Y.S. Gong, A. Braun, H. Liu, J.J. Wang. Unlocking the potential of hematite photoanodes in acidic electrolytes: Boosting performance with ultra‐small IrOx nanoparticles for efficient water splitting. EcoEnergy 2024, 2, 322-335. https://doi.org/10.1002/ece2.41.
[70]
T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production. Chinese Journal of Catalysis 2024, 58, 157-167. https://doi.org/10.1016/s1872-2067(23)64607-8.
[71]
S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang. A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H2 evolution. Nature Communications 2024, 15, 9612. https://doi.org/10.1038/s41467-024-53951-6.
[72]
B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu. Rapid Charge Transfer Endowed by Interfacial Ni-O Bonding in S-scheme Heterojunction for Efficient Photocatalytic H2 and Imine Production. Angewandte Chemie, International Edition 2023, 62, e202313172. https://doi.org/10.1002/anie.202313172.
[73]
L. Xiao, W. Ren, S. Shen, M. Chen, R. Liao, Y. Zhou, X. Li. Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica 2024, 40, 2308036. https://doi.org/10.3866/pku.Whxb202308036.
[74]
X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu. Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction. Nature Communications 2024, 15, 4807. https://doi.org/10.1038/s41467-024-49004-7.
[75]
M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen. Unveiling product selectivity in S-scheme heterojunctions: Harnessing charge separation for tailored photocatalytic oxidation. Chinese Journal of Catalysis 2024, 59, 185-194. https://doi.org/10.1016/s1872-2067(23)64610-8.
[76]
P. Su, J. Yu, P. Deng, D. Qu, T. Liang, H. Zhao, N. Yang, D. Zhang, B. Ge, X. Pu. Construction of 0D/1D Cd0. 5Zn0. 5S/VO2 S-Scheme Heterojunction for Visible Light Photocatalytic Hydrogen Generation via Water Splitting. Journal of Liaocheng University (Natural Science Edition) 2024, 37(5), 123-131. https://doi.org/10.19728/j.issn1672-6634.2024010012.
[77]
C. Yang, X. Li, M. Li, G. Liang, Z. Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution. Chinese Journal of Catalysis 2024, 56, 88-103. https://doi.org/10.1016/s1872-2067(23)64563-2.
[78]
H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li. Fluorenone‐Based Covalent Triazine Frameworks Twinned Zn0. 5Cd0. 5S S‐scheme Heterojunction for Efficient Photocatalytic H2 Evolution. Advanced Functional Materials 2024, 34, 2400065. https://doi.org/10.1002/adfm.202400065.
[79]
R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li. 2D/2D Hydrogen-Bonded Organic Frameworks/Covalent Organic Frameworks S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution. Angewandte Chemie, International Edition 2025, 64, e202414229. https://doi.org/10.1002/anie.202414229.

Footnotes

Authors declare no competing interests

Acknowledgments

This work was supported by the National Key R&D Program of China (2022YFE0126500), the National Natural Science Foundation of China (22278169, 22150610467 and 51973078), the Major projects of the Education Department of Anhui Province (KJ2020ZD005), the Key Foundation of Educational Commission of Anhui Province (KJ2019A0595) and Ministry of Innovative Development of Uzbekistan (AL-5921333212).

RIGHTS & PERMISSIONS

© 2025 This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(1298 KB)

Accesses

Citation

Detail

Sections
Recommended

/