Research progress on Ti-based materials for MgH2 hydrogen storage systems

Huanhuan Zhang, Yanping Fan, Shuyan Guan, Wen-Gang Cui, Mingchang Zhang, Zhenglong Li, Yuhai Dou, Jiarui Yang, Zechao Zhuang, Zhenluo Yuan, Shiqian Zhao, Dingsheng Wang, Baozhong Liu, Hongge Pan

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250201.

PDF(4474 KB)
PDF(4474 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250201. DOI: 10.63823/20250201
Review article

Research progress on Ti-based materials for MgH2 hydrogen storage systems

Author information +
History +

Abstract

Magnesium hydride (MgH2) as a solid-state hydrogen storage material has obtained intense attention in extensive research because of its high hydrogen-storage capacity, excellent reversibility, and relatively low cost. However, two primary obstacles of slow kinetics during hydrogenation/dehydrogenation process and high thermodynamic stability of Mg-H bond hinders the large-scale application of MgH2. Therefore, developing high-efficiency catalysts is necessary for hydrogen storage systems. Titanium (Ti) as an active element, shows promising in enhancing hydrogen storage activity and has been reported extensively. Herein, this review summarized the synthesis approaches, testing technology, and hydrogen storage performance of various Ti-based additives in detail. The structure-activity relationship of Ti-based materials was researched by combining experiment and DFT simulations. In particular, the focus is on the investigation of synthesis, characterization and reaction mechanism of various Ti-based additives. The real active sites and different reaction mechanisms during MgH2 hydrogen storage system are discussed. Finally, a summary and outlook were also presented. This review has the potential to guide the design of high-efficient catalysts and provide embedded guidance for future development and application of Mg-based materials in hydrogen storage system.

Key words

Hydrogen storage / Ti-based additives / Structure-activity relationship / Magnesium hydride

Cite this article

Download Citations
Huanhuan Zhang , Yanping Fan , Shuyan Guan , et al . Research progress on Ti-based materials for MgH2 hydrogen storage systems[J]. Composite Functional Materials. 2025, 1(2): 20250201 https://doi.org/10.63823/20250201

References

[1]
Zhang Xiaofei, Huang Wenhuan, Yu Le, García-Melchor Max, Wang Dingsheng, Zhi Linjie, Zhang Huabin. Enabling heterogeneous catalysis to achieve carbon neutrality: directional catalytic conversion of CO2 into carboxylic acids, Carbon Energy 2024, 6, e362. https://doi.org/10.1002/cey2.362.
[2]
Li Neng, Yang Yufei, Shi Zuhao, Lan Zhigao, Arramel, Zhang Peng, Ong Wee-Jun, Jiang Jizhou, Lu Jianfeng. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites, Iscience 2022, 25, 103753. https://doi.org/10.1016/j.isci.2022.103753.
[3]
Zhou Cheng. Mostafa Torka Beydokhti, Fatima Rammal, Parveen Kumar, Maxime Lacroix, Walter Vermeiren, Michiel Dusselier, Yuhe Liao, Bert F. Sels. Proximity-independent acid-base synergy in a solid ZrOxHy catalyst for amine regeneration in post-combustion CO2 capture, Nature Catalysis 2025, 8, 270-281. https://doi.org/10.1038/s41929-025-01307-8
[4]
Li Jing, Liu Xiang, Xu Si-Min, Xu Ming, Wang Yunlong, Lyu Yizheng, Li An-Zhen, Wang Ye, Wang Xi, Zhou Tiancong, Zhou Hua, Peng Yue, Li Xuning, Zheng Lirong, Duan Haohong. Sustainable oxime production via the electrosynthesis of hydroxylamine in a free state, Nature Synthesis 2025, 4, 1598-1609. https://doi.org/10.1038/s44160-025-00879-4.
[5]
Shen Ji, Tang Minhao, Shi Zuhao, Guan Shuyan, Shi Yijie, Zhuang Zechao, Li Runze, Yang Jiarui, He Daping, Liu Baozhong, Dou Yuhai, Wang Dingsheng. Efficient generation of negative hydrogen with bimetallic-ternary-structured catalysts for nitrobenzene hydrogenation, Angewandte Chemie International Edition 2025, e202423626. https://doi.org/10.1002/anie.202423626.
[6]
Zhang Jiahao, Fu Xianbiao, Kwon Soonho, Chen Kaifeng, Liu Xiaozhi, Yang Jin, Sun Haoran, Wang Yanchang, Uchiyama Tomoki, Uchimoto Yoshiharu, Li Shaofeng, Li Yan, Fan Xiaolong, Chen Gong, Xia Fanjie, Wu Jinsong, Li Yanbo, Yue Qin, Qiao Liang, Su Dong, Zhou Hua, A William, Goddard, Kang Yijin. Tantalum-stabilized ruthenium oxide electrocatalysts for industrial water electrolysis, Science 2025, 387, 48-55. https://doi.org/10.1126/science.ado9938.
[7]
Zhao Xinru, Liu Yanyan, Yuan Huiyu, Wen Hao, Zhang Huanhuan, Ashraf Saima, Guan Shuyan, Liu Tao, Mehdi Sehrish, Shen Ruofan, Guo Xianji, Fan Yanping, Liu Baozhong, Li Baojun. Coupling atom ensemble and electron transfer in PdCu for superior catalytic kinetics in hydrogen generation, Nano Research 2023, 16, 9012-9021. https://doi.org/10.1007/s12274-023-5667-1.
[8]
Lu Zhiwen, Sun Wei, Cai Pingwei, Fan Linfeng, Chen Kai, Gao Jiyuan, Zhang Hao, Chen Junxiang, Wen Zhenhai. High-entropy alloy catalysts for advanced hydrogen-production zinc-based batteries, Energy & Environmental Science 2025, 18, 2918-2930. https://doi.org/10.1039/D4EE05500D.
[9]
Zhang Zhuohan, Yu Zhichao, Liu Zhaoyang, Ma Lixiang, Wang Jing, Li Yuan, Zhang Lu, Han Shumin. Dual-functional Nb/Sm3H7 interface for enhanced hydrogen storage performance in Mg/MgH2 system, Chemical Engineering Journal 2025, 526, 171131. https://doi.org/10.1016/j.cej.2025.171131.
[10]
Zheng Yijuan, Xing Zhenyu, Xiao Sutong, Ye Daoping, Kong Yuxuan, Zhang Shuxin, Ma Tian, Cheng Chong, Li Shuang, Zhao Changsheng. Lattice-matched iridium on vanadium nitride as efficient hydrogen electrocatalyst, Advanced Materials 2025, 37, 2508994. https://doi.org/10.1002/adma.202508994.
[11]
Kang Naixin, Wei Xiaorong, Shen Ruofan, Li Baojun, Cal Eduardo Guisasola, Moya Sergio, Salmon Lionel, Wang Changlong, Coy Emerson, Berlande Murielle, Pozzo Jean-Luc, Astruc Didier. Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration, Applied Catalysis B: Environmental 2023, 320, 121957. https://doi.org/10.1016/j.apcatb.2022.121957.
[12]
Gong Cheng, Li Weixin, Du Xing, He Xuan, Wang Daheng, Chen Hui, Fang Wei, Zhao Lei, Chai Yang. Manipulating spin polarization by in-situ reconstructed amorphous/crystalline CoFe-LDH for efficient electrocatalytic water splitting, Nano Research 2025, 18, 94907668. https://doi.org/10.26599/NR.2025.94907668.
[13]
Zhu Anquan, Qiao Lulu, Liu Kai, Gan Guoqiang, Luan Chuhao, Lin Dewu, Zhou Yin, Bu Shuyu, Zhang Tian, Liu Kunlun, Song Tianyi, Liu Heng, Li Hao, Hong Guo, Zhang Wenjun. Rational design of precatalysts and controlled evolution of catalyst-electrolyte interface for efficient hydrogen production, Nature Communications 2025, 16, 1880. https://doi.org/10.1038/s41467-025-57056-6.
[14]
Chen Zhigang, Zeng Hangyun, Zhang Chunyu, Cai Hang, Jiang Yaping, Hu Jiangyan, Wang Hongyu, Wang Juan, Cui Yi. Ru-Mo solid-solution catalyst for hydrogen evolution in alkaline electrolyte, Nano Research 2025, 18, 94907346. https://doi.org/10.26599/NR.2025.94907346.
[15]
Chen Yue, Kong Xiao, Yang Chengsheng, Liao Yuhe, Gao Ge, Ma Rui, Peng Mi, Shao Weipeng, Zheng Heng, Zhang Hui, Pan Xin, Yang Fan, Zhu Yulei, Liu Zhi, Cao Yong, Ma Ding, Bao Xinhe, Zhu Yifeng. A catalytic cycle that enables crude hydrogen separation, storage and transportation, Nature Energy 2025, 10, 971-980. https://doi.org/10.1038/s41560-025-01806-9.
[16]
Zhang Huanhuan, Liu Yanyan, Liu Shuling, Guan Shuyan, Shen Ruofan, Wen Hao, Cao Xiaoyu, Liu Baozhong, Jiang Jianchun, Li Baojun. Progress and perspective on heterogeneous catalysis of liquid formic acid dehydrogenation: coordination structure design, activity improvement, and mechanism insights, Advanced Materials 2025, 37, e09068. https://doi.org/10.1002/adma.202509068.
[17]
Kumar Niraj, Lee Seul-Yi, Park Soo-Jin. Advancements in hydrogen storage technologies: a comprehensive review of materials, methods, and economic policy, Nano Today 2024, 56, 102302. https://doi.org/10.1016/j.nantod.2024.102302.
[18]
Guan Shuyan, Shen Shijie, Dou Yuhai, Chen Wenwen, Shen Ji, Ye Bochao, Cui Wen-Gang, Zhong Wenwu, Li Zhenglong, Pan Hongge, Wang Dingsheng. Progress and perspectives on hydrogen storage and release in negative hydrogen medium, Energy & Environmental Science, 2025, 18, 9324-9372. https://doi.org/10.1039/D5EE04149J.
[19]
Chu Chenyang, Wu Kai, Luo Bingbing, Cao Qi, Zhang Huiyan. Hydrogen storage by liquid organic hydrogen carriers: catalyst, renewable carrier, and technology-a review, Carbon Resources Conversion 2023, 6, 334-351. https://doi.org/10.1016/j.crcon.2023.03.007.
[20]
Deng Jiayi, Li Yun, Ning Hua, Qing Peilin, Huang Xiantun, Luo Hui, Zhang Liang, Li Guangxu, Huang Cunke, Lan Zhiqiang, Zhou Wenzheng, Guo Jin, Wang Xinhua, Liu Haizhen. MXenes as catalysts for lightweight hydrogen storage materials: a review, Materials Today Catalysis 2024, 7, 100073. https://doi.org/10.1016/j.mtcata.2024.100073.
[21]
Li Dongze, Liu Zhentao, Qiao Liang, Kong Xiaoyang, Wang Enhua, Li Haidong, Jin Lili, Wang Chunya, Xu Chunming, Wang Xilong. One-pot template-free green synthesis of mesoporous amorphous silica-alumina for enhanced hydrogen storage in naphthalene, Journal of Catalysis 2025, 452, 116411. https://doi.org/10.1016/j.jcat.2025.116411.
[22]
Hou Gang, Zhang Bofeng, Xia Liming, Song Mingxia, Liu Guozhu. Structural modulation of Pt nanoparticles anchored by NiOx on silica for enhanced methylcyclohexane dehydrogenation, ACS Catalysis 2025, 15, 19489-19502. https://doi.org/10.1021/acscatal.5c03362.
[23]
Wei Duo, Shi Xinzhe, Qu Ruiyang, Junge Kathrin, Junge Henrik, Beller Matthias. Toward a hydrogen economy: development of heterogeneous catalysts for chemical hydrogen storage and release reactions, ACS Energy Letters 2022, 7, 3734-3752. https://doi.org/10.1021/acsenergylett.2c01850.
[24]
Khan Darvaish, Ong Wee-Jun. Tailoring hydrogen storage materials kinetics and thermodynamics through nanostructuring, and nanoconfinement with In-situ catalysis, Interdisciplinary Materials 2025, 4, 249-283. https://doi.org/10.1002/idm2.12234.
[25]
Zhang Chunmin, Liang Long, Zhao Shaolei, Wu Zhijian, Wang Shaohua, Yin Dongming, Wang Qingshuang, Wang Limin, Wang Chunli, Cheng Yong. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies, Nano Research 2023, 16, 9426-9434. https://doi.org/10.1007/s12274-023-5636-8.
[26]
Li Yuting, Ding Zhao, Jiang Han, Lin Guo, Li Shaoyuan, Du Wenjia, Chen Yu’an, L. Shaw Leon, Pan Fusheng. Spatially programmed confinement catalysis enables high-performance magnesium hydrogen storage, Nano Lett. 2025, 25, 16801-16808. https://doi.org/10.1021/acs.nanolett.5c04450.
[27]
Guan Haotian, Liu Jiang, Sun Xuan, Lu Yangfan, Wang Hongyuan, Luo Qun, Li Qian, Pan Fusheng. Titanium-nickel dual active sites enabled reversible hydrogen storage of magnesium at 180°C with exceptional cycle stability, Advanced Materials 2025, 37, 2500178. https://doi.org/10.1002/adma.202500178.
[28]
Wang Renyuan, Yang Xijia, Chen Xunfeng, Zhang Xia, Chi Yaowei, Zhang Dan, Chu Shaohua, Zhou Pei. A critical review for hydrogen application in agriculture: Recent advances and perspectives, Critical Reviews in Environmental Science and Technology 2024, 54, 222-238. https://doi.org/10.1080/10643389.2023.2232253.
[29]
Yang Hang, Ding Zhao, Li Yu-Ting, Li Shao-Yuan, Wu Ping-Keng, Hou Quan-Hui, Zheng Yang, Gao Biao, Huo Kai-Fu, Du Wen-Jia, L. Shaw Leon. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage, Rare Metals 2023, 42, 2906-2927. https://doi.org/10.1007/s12598-023-02306-z.
[30]
Zhang Lingchao, Wang Ke, Liu Yongfeng, Zhang Xin, Hu Jianjiang, Gao Mingxia, Pan Hongge. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2, Nano Research 2021, 14, 148-156. https://doi.org/10.1007/s12274-020-3058-4.
[31]
Zhang Qiuyu, Li Yinghui, Sun Fengzhan, Lin Xi, Hu Zhigang, Yang Haiyan, Zou Jianxin. Boosting hydrogen storage performances of MgH2 by using a Ni-MOF derived Ni/NiO@C composite containing Ni/NiO nanoheterojunctions, Chemical Engineering Journal 2025, 525, 169631. https://doi.org/10.1016/j.cej.2025.169631.
[32]
Huang Tianping. Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Materials Today Energy 2021, 19, 100613. https://doi.org/10.1016/.mtener.2020.100613.
[33]
Ali Wajid, Li Xinyang, Yang Yuxiao, Li Na, Huang Bo, Wu Chengzhang, Ding Shujiang. in situ formed Ti/Nb nanocatalysts within a bimetal 3D MXene nanostructure realizing long cyclic lifetime and faster kinetic rates of MgH2, ACS Applied Materials & Interfaces 2023, 15, 36167-36178. https://doi.org/10.1021/acsami.3c05308.
[34]
Lan Zhiqiang, Fu Hong, Zhao Ruolin, Liu Haizhen, Zhou Wenzheng, Ning Hua, Guo Jin. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride, Chemical Engineering Journal 2022, 431, 133985. https://doi.org/10.1016/j.cej.2021.133985.
[35]
Qin Yuanlong, Yu Kedi, Wang Guo, Zhuang Zechao, Dou Yuhai, Wang Dingsheng, Chen Zhengbo. Adjacent-ligand tuning of atomically precise Cu-Pd sites enables efficient methanol electrooxidation with a CO-free pathway, Angewandte Chemie International Edition 2025, 64, e202420817. https://doi.org/10.1002/anie.202420817.
[36]
Wang Yao, Ma Fengya, Zhang Guoqing, Zhang Jiawei, Zhao Hui, Dong Yuming, Wang Dingsheng. Precise synthesis of dual atom sites for electrocatalysis, Nano Research 2024, 17, 9397-9427. https://doi.org/10.1007/s12274-024-6940-7.
[37]
Chen Hao, Ma Yongbing, Wu Qilong, Xu Hanshuai, Zhang Lubo, Wang Xin, Lyu Xiao, Chen Jun, Jia Yi. Electrocatalysis for liquid chemical hydrogen storage, Coordination Chemistry Reviews 2025, 534, 216562. https://doi.org/10.1016/j.ccr. 2025.216562.
[38]
Ding Xin, Chen Ruirun, Chen Xiaoyu, Fang Hongze, Wang Qi, Su Yanqing, Guo Jingjie. A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment, Journal of Magnesium and Alloys 2023, 11, 903-915. https://doi.org/10.1016/j.jma. 2021.06.003.
[39]
Ren Li, Li Yinghui, Zhang Ning, Li Zi, Lin Xi, Zhu Wen, Lu Chong, Ding Wenjiang, Zou Jianxin. Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications, Nano-Micro Letters 2023, 15, 93. https://doi.org/10.1007/s40820-023-01041-5.
[40]
Zhu Wen, Ren Li, Lu Chong, Xu Hao, Sun Fengzhan, Ma Zhewen, Zou Jianxin. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances, ACS Nano 2021, 15, 18494-18504. https://doi.org/10.1021/acsnano. 1c08343.
[41]
Liu Pei, Lian Jiajia, Chen Haipeng, Liu Xiaojing, Chen Yuanli, Zhang Tonghuan, Yu Hao, Lu Guojian, Zhou Shixue. In-situ synthesis of Mg2Ni-Ce6O11 catalyst for improvement of hydrogen storage in magnesium, Chemical Engineering Journal 2020, 385, 123448. https://doi.org/10.1016/j.cej.2019. 123448.
[42]
Zhou Dongsheng, Zheng Chunling, Zhang Yanghuan, Sun Hanfeng, Sheng Peng, Zhang Xin, Li Jun, Guo Shihai, Zhao Dongliang. An overview of RE-Mg-based alloys for hydrogen storage: structure, properties, progresses and perspectives, Journal of Magnesium and Alloys 2025, 13, 41-70. https://doi.org/10.1016/j.jma.2024.12.020.
[43]
Halpren Ethan, Yao Xue, Wen Chen Zhi, Veer Singh Chandra. Machine learning assisted design of BCC high entropy alloys for room temperature hydrogen storage, Acta Materialia 2024, 270, 119841. https://doi.org/10.1016/ j.actamat.2024.119841.
[44]
Zhao Xianzheng, Wang Hongyuan, Liu Jiang, Lu Yangfan, Guo Zhilin, Guan Haotian, Ding Zhao, Tan Jun, Li Qian, Wu Jiazhen, Pan Fusheng. Tunable metal-hydrogen bonding in Cu-Ru catalysts enables selective hydrogen storage reactions in Mg-based composite, Advanced Functional Materials 2025, 35, 2505352. https://doi.org/10.1002/adfm.202505352.
[45]
Xia Guanglin, Zhang Lijun, Chen Xiaowei, Huang Yuqin, Sun Dalin, Fang Fang, Guo Zaiping, Yu Xuebin. Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium-sulfur batteries and hydrogen storage, Energy Storage Materials 2018, 14, 314-323. https://doi.org/10.1016/j.ensm.2018.05.008.
[46]
Zhang Jiguang, Zhu Yunfeng, Lin Huaijun, Liu Yana, Zhang Yao, Li Shenyang, Ma Zhongliang, Li Liquan. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement, Advanced Materials 2017, 29, 1700760. https://doi.org/10.1002/adma.201700760.
[47]
Zhao Yuan, Wang Qingshuang, Yin Dongming, Wang Xiaoli, Li Shouliang, Wang Chunli, Liang Long, Zhao Shaolei, Wang Limin, Cheng Yong. Hollow structured Fe@C nanorods for boosting dehydrogenation properties of α-AlH3, Nano Research 2024, 17, 8184-8191. https://doi.org/10.1007/ s12274-024-6867-z.
[48]
Zhao Duode, Hou Xiaojiang, Ge Yu, Sun Dongfeng, Li Danting, Wang Chenlu, Xie Xinlei, Zhu Peixuan, Ye Xiaohui, Suo Guoquan, Yang Yanling. Nanosizing enhancement of hydrogen storage performance and mechanism in Mg-based materials: nano-substrate modulation, nano-catalyst construction, and nano-catalytic mechanisms, Journal of Energy Chemistry 2025, 109, 609-636. https://doi.org/10.1016/j.jechem.2025.06.005.
[49]
Liu Yu-Kun, Pang Yu-Chen, Li Chao-Qun, Zhang Xiao-Yue, Hu Xue-Chun, Chen Wei, Yu Xue-Bin, Xia Guang-Lin. Amorphous VB2 nanoparticles for stable hydrogen storage of 2LiBH4-MgH2, Rare Metals 2025, 44, 5544-5553. https://doi.org/10.1007/s12598-025-03327-6..
[50]
Lang Chengguang, Yao Xiangdong. Enhancing hydrogen storage performance of magnesium-based materials: a review on nanostructuring and catalytic modification, Journal of Magnesium and Alloys 2025, 13, 510-538. https://doi.org/10.1016/j.jma.2025.01.015.
[51]
Mohammed Faraj Saeid B. A., M Abdulkadir H.D. Ismail, Setiabudi. Enhanced hydrogen storage properties of MgH2 through doping with titanium-based catalyst materials: a review and bibliometric analysis, Materials Science in Semiconductor Processing 2025, 200, 109931. https://doi.org/10.1016/j.mssp.2025.109931.
[52]
Ding Zhao, Li Yuting, Yang Hang, Lu Yangfan, Tan Jun, Li Jianbo, Li Qian, Chen Yu’an, L. Shaw Leon, Pan Fusheng. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis, Journal of Magnesium and Alloys 2022, 10, 2946-2967. https://doi.org/10.1016/j.jma. 2022.09.028.
[53]
Zhang Linlin, Xiong Liang, Gao Bingyang, Shi Qingyun, Wang Ying, Han Zhiya, Zhang Zhenhua, Wang Chunli, Wang Limin, Cheng Yong. Tuning microstructures of Mg-Ce-Ni hydrogen storage alloys via Cu and carbon nanotube additions, Nano Research 2024, 17, 7203-7211. https://doi.org/10.1007/s12274-024-6713-y.
[54]
Chen Shuling, Jiang Wenbin, Liu Mili, Shen Shaoyang, Jiang Lin, Wang Hui, Ouyang Liuzhang. Fe-doping strategy enhances reversible hydrogen capacity and cycle stability of V-Ti-Cr solid solution alloy, Journal of Alloys and Compounds 2025, 1045, 184362. https://doi.org/10.1016/ j.jallcom.2025.184362.
[55]
Yuan Zhenluo, Zhang Xiuxiu, Wu Yitian, Guan Shuyan, Zhao Shiqian, Ji Liqiang, Peng Qiuming, Han Shumin, Fan Yanping, Liu Baozhong. Effectively enhanced catalytic effect of sulfur doped Ti3C2 on the kinetics and cyclic stability of hydrogen storage in MgH2, Journal of Magnesium and Alloys 2025, 13, 1843-1853. https://doi.org/10.1016/j.jma.2024.06. 016.
[56]
Wu Yitian, Yuan Zhenluo, Zhang Yaojie, Peng Qiuming, Han Shumin, Fan Yanping, Liu Baozhong. Unleashing superior hydrogen storage of magnesium hydride via vanadium-doped bimetallic MXene, Inorganic Chemistry 2025, 64, 7607-7618. https://doi.org/10.1021/acs.inorgchem.5c00604.
[57]
Zhao Yingyan, Zhu Yunfeng, Shi Rui, Jia Zhen, Zhang Jiguang, Liu Yana, Cheng Honghui, Tang Qinke, Ba Zhixin, Hu Xiaohui, Li Liquan. Structural inhomogeneity: a potential strategy to improve the hydrogen storage performance of metal hydrides, Journal of Materials Chemistry A 2023, 11, 13255-13265. https://doi.org/10.1039/D3TA02114A.
[58]
Xiao Li-Rong, Chen Chen, Wang Shuo, Dai Zi-Yin, Kimura Hideo, Ni Cui, Hou Chuan-Xin, Sun Xue-Qin, Guo Si-Jie, Du Wei, Xie Xiu-Bo. Effects of Ti- and Nb-based transition element from single to multiple compound oxides and carbon-based composite additives on Mg-MgH2 hydrogen storage material, Tungsten 2025, 7, 32-49. https://doi.org/10.1007/ s42864-024-00287-9.
[59]
Li Can, Cheng Fujian, Liu Meijia, Long Zhi, Zhang Jiwei, Zhang Suhai, Ma Yujia, Zhang Tengyu, Kong Fangong, Novel. magnéli phase Ti4O7 with multi-valent titanium: superior catalytic mechanism on MgH2 with enhanced hydrogen absorption/desorption, Chemical Engineering Journal 2025, 519, 165648. https://doi.org/10.1016/j.cej.2025. 165648.
[60]
Zhu Shi-Cheng, Xiao Fang-Xing. Transition metal chalcogenides quantum dots: emerging building blocks toward solar-to-hydrogen conversion, ACS Catalysis 2023, 13, 7269-7309. https://doi.org/10.1021/acscatal.2c05401.
[61]
Zhou Yu, Wang Weikang, Li Jinhe, Ren Wei, Wang Lele, Liu Qinqin. Transition metal sulfide cocatalysts: applications and challenges in photocatalytic hydrogen production, Chemical Research in Chinese Universities 2025, 41, 687-703. https://doi.org/10.1007/s40242-025-5103-z.
[62]
Na Shengnan, Shi Xugen, Chai Dong-Feng, Guo Dongxuan, Li Jinlong. Synergistic hybridization between third-period and fifth-period transition metal orbitals in entropy-stabilized layered double hydroxides for long-term oxygen evolution catalysis, Journal of Colloid and Interface Science 2025, 693, 137641. https://doi.org/10.1016/j.jcis.2025.137641.
[63]
Pu Chen, Wu Suqin, Deng Daijie, He Ren, Cabot Andreu, Xu Li, Li Henan, Yan Cheng. Transition metal alloy-based catalysts for zinc-air batteries: a comprehensive review, Coordination Chemistry Reviews 2026, 546, 217045. https://doi.org/10.1016/j.ccr.2025.217045.
[64]
Luo Qun, Li Jianding, Li Bo, Liu Bin, Shao Huaiyu, Li Qian. Kinetics in Mg-based hydrogen storage materials: enhancement and mechanism, Journal of Magnesium and Alloys 2019, 7, 58-71. https://doi.org/10.1016/j.jma.2018.12.001.
[65]
Ren Zhuanghe, Zhang Xin, Li Hai-Wen, Huang Zhenguo, Hu Jianjiang, Gao Mingxia, Pan Hongge, Liu Yongfeng.Titanium hydride nanoplates enable 5 wt% of reversible hydrogen storage by sodium alanate below 80°C, Research 2021. https://doi.org/10.34133/2021/9819176.
[66]
Cao Shusheng, Li Yinghui, Wang Bolun, Rao Wentao, Wang Yanyue, Du Hao, Wang Dong, Zhang Jiaqi, Lin Xi, Zou Jianxin.Low temperature thermolysis and hydrolysis of MgH2 generated from a titanium-mediated hydrogenation of Mg2Si, Journal of Magnesium and Alloys 2025. https://doi.org/10.1016/j.jma.2025.07.002.
[67]
Zhou Xiang, Li Jianbo, Guan Haotian, Liu Jiang, Lu Heng, Zhao Yingxiang, Chen Yu’an, Wang Jingfeng, Li Qian, Lu Yangfan, Pan Fusheng. Enhanced de/hydrogenation kinetics and cycle stability of Mg/MgH2 by the MnOx-coated Ti2CTx catalyst with optimized Ti-H bond stability, Journal of Physical Chemistry Letters 2024, 15, 8773-8780. https://doi.org/10.1021/acs.jpclett.4c01835.
[68]
S.N. Madhu Yadav. Dolia, Chhagan Lal. Optimizing hydrogen storage properties: MXene (MX)-VCl3 assisted kinetics in magnesium/magnesium hydride for sustainable energy, Journal of the Indian Chemical Society 2025, 102, 101878. https://doi.org/10.1016/j.jics.2025.101878.
[69]
Ma Zhongliang, Tang Qinke, Ni Jinlian, Zhu Yunfeng, Zhang Yao, Li Hai-Wen, Zhang Jiguang, Liu Yana, Ba Zhixin, Li Liquan. Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4, Chemical Engineering Journal 2022, 433, 134489. https://doi.org/10.1016/j.cej.2021.134489.
[70]
Dong Yanfeng, Wu Zhong-Shuai, Zheng Shuanghao, Wang Xiaohui, Qin Jieqiong, Wang Sen, Shi Xiaoyu, Bao Xinhe. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities, ACS Nano 2017, 11, 4792-4800. https://doi.org/10.1021/acsnano.7b01165.
[71]
Zhou Chengshang, Zhang Jingxi, C Robert, Jr. Bowman, Zak Fang Zhigang. Roles of Ti-based catalysts on magnesium hydride and its hydrogen storage properties, Inorganics 2021, 9, 36. https://doi.org/10.3390/inorganics9050036.
[72]
Zhang Meng, Xiao Xuezhang, Wang Xinwei, Chen Man, Lu Yunhao, Liu Meijia, Chen Lixin. Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2, Nanoscale 2019, 11, 7465-7473. https://doi.org/10.1039/C8NR10275A.
[73]
Huang Jimei, Meng Ruijin, Zu Lianhai, Wang Zhijun, Feng Nan, Yang Ziyi, Yu Yan, Yang Jinhu. Sandwich-like Na0. 23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries, Nano Energy 2018, 46, 20-28. https://doi.org/10.1016/j.nanoen.2018.01.030.
[74]
Wu Xin-xing, Hu Wei. First-principles study of Pd single-atom catalysis to hydrogen desorption reactions on MgH2(110) surface, Chinese Journal of Chemical Physics 2019, 32, 319-326. https://doi.org/10.1063/1674-0068/cjcp1809209.
[75]
Wang Chenlu, Hou Xiaojiang, Liu Hu, Sun Dongfeng, Li Fuping, Ge Yu, Zhao Duode, Li Danting, Xie Xinlei, Zhu Peixuan, Ye Xiaohui, Suo Guoquan, Yang Guang, Yang Yanling. Catalytic modifications to enhance the hydrogen storage behavior of Mg-based materials: single-component, multi-component single-phase and multiphase interfacial composite catalytic, Journal of Energy Chemistry 2025, 110, 393-426. https://doi.org/10.1016/j.jechem.2025.06.071.
[76]
Li Yinghui, Zhang Qiuyu, Ren Li, Li Zi, Lin Xi, Ma Zhewen, Yang Haiyan, Hu Zhigang, Zou Jianxin. Core-shell nanostructured magnesium-based hydrogen storage materials: a critical review, Industrial Chemistry & Materials 2023, 1, 282-298. https://doi.org/10.1039/D3IM00061C.
[77]
Chen Kang, Lau Mei Yi, Luo Xinyuan, Huang Jiani, Ouyang Liuzhang, Yang Xu-Sheng. Research progress in solid-state hydrogen storage alloys: a review, Journal of Materials Science and Technology 2026, 246, 256-289. https://doi.org/10.1016/j.jmst.2025.05.037.
[78]
Wang Hongyuan, Li Jie, Wei Xinlin, Zheng Yan, Yang Shenglan, Lu Yangfan, Ding Zhao, Luo Qun, Li Qian, Pan Fusheng. Thermodynamic and kinetic regulation for Mg-based hydrogen storage materials: challenges, strategies, and perspectives, Advanced Functional Materials 2024, 34, 2406639. https://doi.org/10.1002/adfm.202406639.
[79]
Yang Lin, Zeng Wen, Li Yanqiong. Advancements in the modification of magnesium-based hydrogen storage materials, Progress in Natural Science: Materials International 2024, 34, 540-554. https://doi.org/10.1016/j.pnsc.2024.05.001.
[80]
Lu Heng, Li Jianbo, Zhang Ruilin, Nie Kunyan, Li Qian, Chen Yu’an, Pan Fusheng. Advances and perspectives of two-dimensional materials MXenes: efficient catalysts for magnesium hydride, Renewable and Sustainable Energy Reviews 2025, 217, 115759. https://doi.org/10.1016/j.rser.2025.115759.
[81]
Jia Kai, Wu Yake, Wang Xiuzhen, Wu Fuying, Shang Danhong, Li Hong, Zhang Liuting. A review on 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: performance optimization and perspectives, Journal of Energy Storage 2025, 134, 118160. https://doi.org/10.1016/j.est.2025.118160.
[82]
Hirose Takashi, Matsui Naoki, Itoh Takashi, Hinuma Yoyo, Ikeda Kazutaka, Gotoh Kazuma, Jiang Guangzhong, Suzuki Kota, Hirayama Masaaki, Kanno Ryoji. High-capacity, reversible hydrogen storage using H--conducting solid electrolytes, Science 2025, 389, 1252-1255. https://doi.org/10.1126/science.adw1996.
[83]
Li Chaoqun, Ding Ying, Zhang Xiaoyue, Hu Xuechun, Yu Xuebin, Sun Dalin, Xia Guanglin. Hydrogen storage in magnesium hydride at room temperature enabled by graphene-stabilized multivalent niobium oxides, Advanced Materials 2025, 37, e11759. https://doi.org/10.1002/adma.202511759.
[84]
Duan Xingqing, Liang Shuo, He Shixuan, Chen Jinting, Zhang Zeyu, Liu Bogu, Li Yawei, Huang Haixiang, Wu Ying. Mechanistic insights into the enhancement of MgH2 hydrogen storage performance by ultra-stable bimetallic Mo2V2C3 MXene, Journal of Energy Chemistry 2025, 108, 724-735. https://doi.org/10.1016/j.jechem.2025.05.020.
[85]
Shao Longfei, Lin Xi, Bian Liansen, Wang Yanyue, Hu Shouyi, Han Yaobin, Huang Ke, Zhang Ning, Zhang Jiaqi, Zou Jianxin. Engineering control strategy of hydrogen gas direct-heating type Mg-based solid state hydrogen storage tanks: A simulation investigation, Applied Energy 2024, 375, 124134. https://doi.org/10.1016/j.apenergy.2024.124134.
[86]
Ma Zhenxuan, Zheng Jiaguang, Xia Ao, Zhang Qingbo, Lv Meiling, Li Cong, Zhou Panpan. Enhanced hydrogen storage performance of Mg(BH4)2 with in-situ generated TiO2 and TiH2 catalysts, Chemical Engineering Journal 2025, 512, 162488. https://doi.org/10.1016/j.cej.2025.162488.
[87]
Liu Shiyuan, Zhang Yue, Zhu Fangzhou, Liu Jieyuan, Wan Xin, Liu Ruonan, Liu Xiaofang, Shang Jia-Xiang, Yu Ronghai, Feng Qiang, Wang Zili, Shui Jianglan. Mg-MOF-74 derived defective framework for hydrogen storage at above-ambient temperature assisted by Pt catalyst, Advanced Science 2024, 11, 2401868. https://doi.org/10.1002/advs.202401868.
[88]
Zhang Xin, Liu Yongfeng, Wang Ke, Gao Mingxia, Pan Hongge. Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation, Nano Research 2015, 8, 533-545. https://doi.org/10.1007/s12274-014-0667-9.
[89]
Yuan Zhenluo, Zhang Dafeng, Fan Guangxin, Chen Yumei, Fan Yanping, Liu Baozhong. Synergistic effect of CeF3 nanoparticles supported on Ti3C2 MXene for catalyzing hydrogen storage of NaAlH4, ACS Applied Energy Materials 2021, 4, 2820-2827. https://doi.org/10.1021/acsaem.1c00122.
[90]
Zhang Huanhuan, Kong Qianqian, Hu Song, Zhang Dafeng, Chen Haipeng, Xu Chunbao Charles, Li Baojun, Fan Yanping, Liu Baozhong. Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage, ACS Sustainable Chemistry&Engineering 2021, 10, 363-371. https://doi.org/10.1021/acssuschemeng.1c06444.
[91]
Zhu Jiajing, Wang Hui, Zhai Yuqi, Huang Liangjun, Cui Jie, Ouyang Liuzhang, Zhu Min, Huot Jacques. Cr-doped TiO2 catalyzing fast hydrogen absorption of MgH2 at subzero temperatures, ACS Applied Energy Materials 2024, 7, 6667-6676. https://doi.org/10.1021/acsaem.4c01283.
[92]
Wang Yuhang, Fan Guangxin, Zhang Dafeng, Fan Yanping, Liu Baozhong. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2, Journal of Alloys and Compounds 2022, 914, 165291. https://doi.org/10.1016/j.jallcom.2022.165291.
[93]
Ren Li. Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2, Nano-Micro Letters 2022, 14, 144. https://doi.org/10.1007/s40820-022-00891-9.
[94]
Jain Ankur, Agarwal Shivani, Kumar Sanjay, Yamaguchi Shotaro, Miyaoka Hiroki, Kojima Yoshitsugu, Ichikawa Takayuki. How does TiF4 affect the decomposition of MgH2 and its complex variants? -An XPS investigation, Journal of Materials Chemistry A 2017, 5, 15543-15551. https://doi.org/10.1039/C7TA03081A.
[95]
Chen Man, Xiao Xuezhang, Zhang Meng, Liu Meijia, Huang Xu, Zheng Jiaguang, Zhang Yiwen, Jiang Lijun, Chen Lixin. Excellent synergistic catalytic mechanism of in-situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride, International Journal of Hydrogen Energy 2019, 44, 1750-1759. https://doi.org/10.1016/j.ijhydene.2018.11.118.
[96]
Zhang Meng, Xiao Xuezhang, Luo Bosang, Liu Meijia, Chen Man, Chen Lixin. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures, Journal of Energy Chemistry 2020, 46, 191-198. https://doi.org/10.1016/j.jechem.2019.11.010.
[97]
Gao Haiguang, Shi Rui, Shao Yuting, Liu Yana, Zhu Yunfeng, Zhang Jiguang, Hu Xiaohui, Li Liquan, Ba Zhixin. One-step self-assembly of TiO2/MXene heterostructures for improving the hydrogen storage performance of magnesium hydride, Journal of Alloys and Compounds 2022, 895, 162635. https://doi.org/10.1016/j.jallcom.2021.162635.
[98]
Gao Haiguang, Shi Rui, Zhu Jinglian, Liu Yana, Shao Yuting, Zhu Yunfeng, Zhang Jiguang, Li Liquan, Hu Xiaohui. Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2, Applied Surface Science 2021, 564, 150302. https://doi.org/10.1016/j.apsusc.2021.150302
[99]
Huang Xu, Xiao Xuezhang, Wang Xuancheng, Wang Chuntao, Fan Xiulin, Tang Zhichu, Wang Caiyun, Wang Qidong, Chen Lixin. Synergistic catalytic activity of porous rod-like TMTiO3 (TM = Ni and Co) for reversible hydrogen storage of magnesium hydride, The Journal of Physical Chemistry C 2018, 122, 27973-27982. https://doi.org/10.1021/acs.jpcc.8b10387.
[100]
Zhang Meng, Xiao Xuezhang, Hang Zhouming, Chen Man, Wang Xuancheng, Zhang Nan, Chen Lixin. Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride, International Journal of Hydrogen Energy 2021, 46, 814-822. https://doi.org/10.1016/j.ijhydene.2020.09.173.
[101]
Huang Tianping, Huang Xu, Hu Chuanzhu, Wang Jie, Liu Huabing, Xu Hao, Sun Fengzhan, Ma Zhewen, Zou Jianxin, Ding Wenjiang. MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH, Chemical Engineering Journal 2021, 421, 127851. https://doi.org/10.1016/j.cej.2020.127851.
[102]
Lu Chong, Ma Yanling, Li Fan, Zhu Hong, Zeng Xiaoqin, Ding Wenjiang, Deng Tao, Wu Jianbo, Zou Jianxin. Visualization of fast “hydrogen pump” in core-shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt, Journal of Materials Chemistry A 2019, 7, 14629-14637. https://doi.org/10.1039/C9TA03038G.
[103]
Wu Yali, Meng Yuqin, Ma Li, Zhao Junmiao, Tang Jianling, Chen Hongshan. How does Ti-doping affect hydrogen storage properties of MgH2 at nanosize? Russian Journal of Physical Chemistry A 2021, 95, 1424-1431. https://doi.org/10.1134/S0036024421070293.
[104]
Chen Man, Xiao Xuezhang, Zhang Meng, Zheng Jiaguang, Liu Meijia, Wang Xuancheng, Jiang Lijun, Chen Lixin. Highly dispersed metal nanoparticles on TiO2 acted as nano redox reactor and its synergistic catalysis on the hydrogen storage properties of magnesium hydride, International Journal of Hydrogen Energy 2019, 44, 15100-15109. https://doi.org/10.1016/j.ijhydene.2019.04.047.
[105]
Wang Qingqing, Kong Xianggang, Han Huilei, Sang Ge, Zhang Guanghui, Gao Tao. The performance of adsorption, dissociation and diffusion mechanism of hydrogen on the Ti-doped ZrCo(110) surface, Physical Chemistry Chemical Physics 2019, 21, 12597-12605. https://doi.org/10.1039/C9CP02491C.
[106]
Gong Xu, Shao Xiaohong, Stability. electronic structure, and dehydrogenation properties of pristine and doped 2D MgH2 by the first principles study, Metals 2018, 8, 482. https://doi.org/10.3390/met8070482.
[107]
Erkisi Aytac, Gökoglu Gökhan. First principles investigation of Mg7XH16 (X = Ti, Zn, Pd, and Cd) ternary hydrides for hydrogen storage applications, Materials Research Express 2018, 5, 065517. https://doi.org/10.1088/2053-1591/aacbb6.
[108]
Wang Lei, Zhao Baozhou, Liu Jiangchuan, Yuan Jianguang, Zhu Yunfeng, Liu Bogu, Wu Ying, Li Liquan.Yong Cheng, S. X. Zhou. Effect of Ti-EG-Ni dual-metal organic crystal-derived TiO2/C/Ni on the hydrogen storage performance of MgH2, ACS Applied Materials & Interfaces 2025, 17, 15274-15286. https://doi.org/10.1021/acsami.4c18239.
[109]
Wang Zhao-Yi. Role of metal impurity in hydrogen diffusion from surface into bulk magnesium: a theoretical study, Physics Letters A 2017, 381, 3696-3700. https://doi.org/10.1016/j.physleta.2017.09.035.
[110]
Dai J.H., Jiang X.W., Song Y.. Stability and hydrogen adsorption properties of Mg/TiMn2 interface by first principles calculation, Surface Science 2016, 653, 22-26. https://doi.org/10.1016/j.susc.2016.05.006.
[111]
Huang Zhuonan, Wang Yuqi, Zhang Meiguang. Excellent catalytic activity of two-dimensional Ti2C and Ti2CT2 (T = O, F, OH) monolayers on hydrogen storage of MgH2: first-principles calculations, International Journal of Hydrogen Energy 2021, 46 (66), 33176-33185. https://doi.org/10.1016/j.ijhydene.2021.07.168.
[112]
Pan Yong, Chen Shuang. Exploring the novel structure, transportable capacity and thermodynamic properties of TiH2 hydrogen storage material, International Journal of Energy Research 2020, 44, 11. https://doi.org/10.1002/er.5260.
[113]
Mohammed Faraj Saeid B. A., M Abdulkadir H.D. Ismail, Setiabudi. Hydrogen storage in MgH2 catalyzed by Fe nanoparticles and hollow silica spheres, Fuel 2025, 400, 135635. https://doi.org/10.1016/j.fuel.2025.135635.
[114]
Hu Chunyan, Mo Xiaohua, Zhou Haojie, Li Xiulan, Zuo Xiaoli, Ma Yu, Jiang Weiqing. Insight into enhanced dehydrogenation of LiBH4 modified by Ti and O from first-principles calculations, Computational & Theoretical Chemistry 2024, 1238, 114718. https://doi.org/10.1016/j.comptc.2024.114718.
[115]
Yang Huimin, Sun Xuan, Luo Qun, Lu Yangfan, Li Qian, Pan Fusheng. Superior hydrogen storage kinetics of MgH2 by in-situ generated α-Fe from the Fe-zeolitic imidazolate framework, Scripta Materialia 2024, 239, 115782. https://doi.org/10.1016/j.scriptamat.2023.115782.
[116]
Han Bo,Jia Yuxiao, Wang Jianchuan, Xiao Xuezhang, Chen Lixin, Sun Lixian, Du Yong, structural The. energetic and dehydrogenation properties of pure and Ti-doped Mg(0001)/MgH2(110) interfaces, Journal of Materials Chemistry A 2023, 11, 26602-26616. https://doi.org/10.1039/D3TA06177A.
[117]
Zhang J., Sun L.Q., P Y.C. Zhou,. Peng Dehydrogenation thermodynamics of magnesium hydride doped with transition metals: Experimental and theoretical studies, Computational Materials Science 2015, 98, 211-219. https://doi.org/10.1016/j.commatsci.2014.11.016.
[118]
Ren Kaixiang, Ding Xiaoli, Cheng Yuwen, Li Hai-Wen, Li Yongtao. in situ hydrogenolysis-engineered TixC MXenes synergistically enhance hydrogen storage in magnesium, Journal of Colloid and Interface Science 2025, 699, 138204. https://doi.org/10.1016/j.jcis.2025.138204.
[119]
Wang Ying, Li Li, An Cuihua, Wang Yijing, Chen Chengcheng, Jiao Lifang, Yuan Huatang. Facile synthesis of TiN decorated graphene and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride, Nanoscale 2014, 6, 6684-6691. https://doi.org/10.1039/C4NR00474D.
[120]
Baran Agata, R Torben, Jensen, Polański Marek. High-temperature high-pressure reactive ball milling synthesis of Mg-Ni-based solid-state hydrogen storage materials, Journal of Energy Storage 2024, 103, 114271. https://doi.org/10.1016/j.est.2024.114271.
[121]
Zhang Rui-Lin, Li Jian-Bo, Lu Heng, Nie Kun-Yan, Li Hong-Yi, Zhang Er-Ni, Qiang Zhen-Hui, Liu Bo-Yu, Chen Yu-An, Pan Fu-Sheng. Synergistic enhancement of hydrogen storage thermodynamic and kinetic performances in Mg-La-Ce alloys via Ti particle doping, Rare Metals 2025. https://doi.org/10.1007/s12598-025-03580-9.
[122]
Xu Yaohui, Li Yuting, Hou Quanhui, Hao Yechen, Ding Zhao. Ball milling innovations advance Mg-based hydrogen storage materials towards practical applications, Materials 2024, 17, 2510. https://doi.org/10.3390/ma17112510.
[123]
El-Eskandarany M. Sherif. Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders, Energy 2015, 91, 274-282. https://doi.org/10.1016/j.energy.2015.07.135.
[124]
Hong Haoliang R.P. Alexander, Harrison, Nie Binjian. Linking the microstructure of ball-milled Mg-Ni hydrogen storage materials to reactive properties and techno-economic feasibility, Energy & Fuels 2025, 39, 13789-13800. https://doi.org/10.1021/acs.energyfuels.5c01986.
[125]
Viktor N. Kudiyarov R. Elman Roman. Nikita E. Kurdyumov. The effect of high-energy ball milling conditions on microstructure and hydrogen desorption properties of magnesium hydride and single-walled carbon nanotubes, Metals 2021, 11, 1409. https://doi.org/10.3390/met11091409.
[126]
Gao Ge, Xie Jia-Xing, Zhang Liu-Ting, Lv Chun-Ju, Li Chao, Fan Mei-Qiang, Yao Zhen-Dong. Improvement on hydrogen storage performance of MgH2 by THF-promoted nano-crystallization under low-speed ball milling, Rare Metals 2025, 44, 6366-6374. https://doi.org/10.1007/s12598-025-03330-x.
[127]
Huang Yike, An Cuihua, Zhang Qiuyu, Zang Lei, Shao Huaxu, Liu Yafei, Zhang Yan, Yuan Huatang, Wang Caiyun, Wang Yijing. Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage, Nano Energy 2021, 80, 105535. https://doi.org/10.1016/j.nanoen.2020.105535.
[128]
Hou Xiaojiang, Zhao Duode, Cao Qianhong, Wang Chenlu, Li Danting, Xie Xinlei, Zhu Peixuan, Ye Xiaohui, Suo Guoquan, Yang Guang, Yang Yanling. Optimizing Ti3C2Tx to activate passivated Mg for direct and widespread application in hydrogen storage, Renewable Energy 2026, 256, 124302. https://doi.org/10.1016/j.renene.2025.124302.
[129]
Jiang Yi, Si Nan, Wang Zan, Zhang Hui, Jiang Wei. Improved hydrogen storage kinetic properties of MgH2 with NiO/NiCo(Fe)2O4/(Ni), Energy & Fuels 2024, 38, 23804-23814. https://doi.org/10.1021/acs.energyfuels.4c04640.
[130]
Nurmalita Malahayati. Ismail M. N. Machmud Z. Jalil. Sorption behavior of MgH2-Ti for Hydrogen storage material prepared by high pressure milling, Journal of Physics: Conference Series 2021, 1882, 012005. https://doi.org/10.1088/1742-6596/1882/1/012005.
[131]
Sun Lei, Sun Rong, Liu Jianjun, Zhu Mengzhou, Zhang Xiaoqin, Guo Dongliang, Yin Kangyong, Zhuang Zhiyun, Zhu Xueqiong, Xiao Peng. Coupling of two-dimensional MXenes and graphene for boosting the hydrogen storage performance of MgH2, Nanoscale 2024, 16, 19873-19880. https://doi.org/10.1039/D4NR02868F.
[132]
Zhang Guorong, Liang Taigen, Xu Fen, Sun Lixian, Wei Sheng, Liu Jiaxi, Qin Lina, Lin Xia, Xia Yongpeng.Structural and defect engineering of Pt-loaded MAX fibers with oxygen vacancies for enhanced hydrogen storage properties of MgH2, Journal of Magnesium and Alloys 2025. https://doi.org/10.1016/j.jma.2025.08.024.
[133]
Yuan Zhenluo, Wang Yuhang, Zhang Xiuxiu, Guan Shuyan, Wang Xiaojiao, Ji Liqiang, Peng Qiuming, Han Shumin, Fan Yanping, Liu Baozhong. Catalytic effects of V- and O-species derived from PrF3/V2C for efficient hydrogen storage in MgH2, Nano Research 2024, 17, 7117-7125. https://doi.org/10.1007/s12274-024-6550-4.
[134]
Yan Nianhua, Lu Xiong, Lu Zhiyu, Yu Haijie, Wu Fuying, Zheng Jiaguang, Wang Xiuzhen, Zhang Liuting. Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, Journal of Magnesium and Alloys 2022, 10, 3542-3552. https://doi.org/10.1016/j.jma.2021.03.014.
[135]
Lu Xiong. Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chemical Engineering Journal 2021, 422, 130101. https://doi.org/10.1016/j.cej.2021.130101.
[136]
Zhang Yanghuan, Wei Xin, Zhang Wei, Yuan Zeming, Gao Jinliang, Ren Huiping. Catalytic effect comparison of TiO2 and La2O3 on hydrogen storage thermodynamics and kinetics of the as-milled La-Sm-Mg-Ni-based alloy, Journal of Magnesium and Alloys 2021, 9, 2063-2077. https://doi.org/10.1016/j.jma.2021.03.006.
[137]
Lu Zhi-Yu. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met. 2021, 40, 10. https://doi.org/10.1007/s12598-021-01764-7.
[138]
Xu Nuo, Wang Kaiwen, Zhu Yunfeng, Zhang Yao. PdNi biatomic clusters from metallene unlock record‐low onset dehydrogenation temperature for bulk‐MgH2, Advanced Materials 2023, 35 (38), 2303173. https://doi.org/10.1002/adma.202303173.
[139]
Peng Cong, Yang Cuizhen, Zhang Qingan. Few-layer MXene Ti3C2Tx supported Ni@C nanoflakes as a catalyst for hydrogen desorption of MgH2, Journal of Materials Chemistry A 2022, 10, 12409-12417. https://doi.org/10.1039/D2TA02958H.
[140]
Wang Zexuan, Tian Zhihui, Yao Pufan, Zhao Huimin, Xia Chaoqun, Yang Tai. Improved hydrogen storage kinetic properties of magnesium-based materials by adding Ni2P, Renewable Energy 2022, 189, 559-569. https://doi.org/10.1016/j.renene.2022.03.001.
[141]
Xu Yaohui, Zhou Yang, Li Yuting, Hao Yechen, Wu Pingkeng, Ding Zhao. Recent advances in the preparation methods of magnesium-based hydrogen storage materials, Molecules 2024, 29, 2451. https://doi.org/10.3390/molecules 29112451.
[142]
S Sumanth Dongre, R Shwetharani. Chandan Hunsur Ravikumar, Lavanya C, R. Geetha Balakrishna. Review on 2D arsenene and antimonene: emerging materials for energy, electronic and biological applications, Advanced Materials Interfaces 2022, 9, 2200442. https://doi.org/10.1002/admi.202200442.
[143]
Ouyang Liuzhang, Cao Zhijie, Wang Hui, Hu Renzhong, Zhu Min. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials-A review, Journal of Alloys and Compounds 2017, 691, 422-435. https://doi.org/10.1016/j.jallcom.2016.08.179.
[144]
Ouyang L.Z., Cao Z.J., Wang H., Liu J.W., Sun D.L., Zhang Q.A., Zhu M.. Enhanced dehydriding thermodynamics and kinetics in Mg(In)-MgF2 composite directly synthesized by plasma milling, Journal of Alloys and Compounds 2014, 586, 113-117. https://doi.org/10.1016/j.jallcom.2013.10.029.
[145]
Wang Hui, Zeng Meiqin, Liu Jiangwen, Lu Zhongcheng, Shi Zhenhua, Ouyang Liuzhang, Zhu Min. One-step synthesis of ultrafine WC-10Co hardmetals with VC/V2O5 addition by plasma assisted milling, International Journal of Refractory Metals and Hard Materials 2015, 48, 97-101. https://doi.org/10.1016/j.ijrmhm.2014.07.035.
[146]
Cao Zhijie, Ouyang Liuzhang, Wu Yuyu, Wang Hui, Liu Jiangwen, Fang Fang, Sun Dalin, Zhang Qingan, Zhu Min. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling, Journal of Alloys and Compounds 2015, 623, 354-358. https://doi.org/10.1016/j.jallcom.2014.10.200.
[147]
Yang Bo, Zou Jianxin, Huang Tianping, Mao Jianfeng, Zeng Xiaoqin, Ding Wenjiang. Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method, Chemical Engineering Journal 2019, 371, 233-243. https://doi.org/10.1016/j.cej.2019.04.046.
[148]
Zhang Xin,Liu Yongfeng, Ren Zhuanghe, Zhang Xuelian, Hu Jianjiang, Huang Zhenguo, Lu Yunhao, Gao Mingxia, Pan Hongge. Realizing 6. 7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides, Energy & Environmental Science 2021, 14, 2302-2313. https://doi.org/10.1039/D0EE03160G.
[149]
Chen Shenghua, Zheng Xiaobo, Zhu Peng, Li Yapeng, Zhuang Zechao, Wu Hangjuan, Zhu Jiexin, Xiao Chunhui, Chen Mingzhao, Wang Pingshan, Wang Dingsheng, He Ya-Ling. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4, Angewandte Chemie International Edition 2024, 63, e202411591. https://doi.org/10.1002/anie.202411591.
[150]
Zhao Zeyu, Chen Ting, Ding Bing, Zhang Shengliang, Chen Duo, Chen Gao, Zhu Yanping, Zhang Xiaogang. Reaction route innovates design of metal supported single atom electrocatalysts for hydrogen evolution: a review, Chemical Engineering Journal 2025, 523, 168834. https://doi.org/10.1016/j.cej.2025.168834.
[151]
Guan Shuyan, Yuan Zhenluo, Zhao Shiqian, Zhuang Zechao, Zhang Huanhuan, Shen Ruofan, Fan Yanping, Li Baojun, Wang Dingsheng, Liu Baozhong. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst, Angewandte Chemie International Edition 2024, 63, e202408193. https://doi.org/10.1002/anie.202408193.
[152]
Ye Bo-Chao, Li Wen-Hao, Zhang Xia, Chen Jian, Gao Yong, Wang Dingsheng, Pan Hongge. Advancing heterogeneous organic synthesis with coordination chemistry-empowered single-atom catalysts, Advanced Materials 2024, 36, 2402747. https://doi.org/10.1002/adma.202402747.
[153]
Wang Xin-Yu, Wei Wan-Jie, Zhou Si-Yu, Pan Yong-Zhou, Yang Jiarui, Gan Tao, Zhuang Zechao, Li Wen-Hao, Zhang Xia, Pan Ying-Ming, Tang Hai-Tao, Wang Dingsheng. Phosphorus-doped single atom copper catalyst as a redox mediator in the cathodic reduction of quinazolinones, Angewandte Chemie International Edition 2025, 64, e202505085. https://doi.org/10.1002/anie.202505085.
[154]
Yu Luo, Ning Minghui, Wang Yu, Yuan Chuqing, Ren Zhifeng. Direct seawater electrolysis for hydrogen production, Nature Reviews Materials 2025, 10, 857-873. https://doi.org/10.1038/s41578-025-00826-x.
[155]
Tang Bing, Ji Qianqian, Zhang Xilin, Shi Runchuan, Ma Jin, Zhuang Zechao, Sun Mei, Wang Huijuan, Liu Ruiqi, Liu Hengjie, Wang Chao, Guo Zhiying, Lu Lanlu, Jiang Peng, Wang Dingsheng, Yan Wensheng. Symmetry breaking of FeN4 moiety via edge defects for acidic oxygen reduction reaction, Angewandte Chemie International Edition 2025, 64, e202424135. https://doi.org/10.1002/anie.202424135.
[156]
Shen Ji, Chen Jian, Qian Yuping, Wang Xinqiang, Wang Dingsheng, Pan Hongge, Wang Yuguang. Atomic engineering of single-atom nanozymes for biomedical applications, Advanced Materials 2024, 36, 2313406. https://doi.org/10.1002/adma.202313406.
[157]
Zhou Hanghang, Ye Wenqiang, Jiang Jizhou, Wang Zheng. Recent advances on surface modification of non-oxide photocatalysts towards efficient CO2 conversion, Carbon Letters 2024, 34, 1569-1591. https://doi.org/10.1007/s42823-024-00748-8.
[158]
Wang Ligang, Wang Dingsheng, Li Yadong. Single-atom catalysis for carbon neutrality, Carbon Energy 2022, 4, 1021-1079. https://doi.org/10.1002/cey2.194.
[159]
Zhuang Jiahao, Wang Dingsheng. Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications, Materials Today Catalysis 2023, 2, 100009. https://doi.org/10.1016/j.mtcata.2023.100009.
[160]
Duan Congwen, Tian Yating, Wang Xinya, Wu Jinhui, Liu Bogu, Fu Dong, Zhang Yuling, Lv Wei, Hu Lianxi, Wang Fei, Zhang Xu, Wu Ying. Anchoring Mo single atoms on N-CNTs synchronizes hydrogenation/dehydrogenation property of Mg/MgH2, Nano Energy 2023, 113, 108536. https://doi.org/10.1016/j.nanoen.2023.108536.
[161]
Huang Haixiang, Xu Tingting, Chen Jinting, Yuan Jianguang, Yang Weijie, Liu Bogu, Zhang Bao, Wu Ying. Enhanced catalysis of Pd single atoms on Sc2O3 nanoparticles for hydrogen storage of MgH2, Chemical Engineering Journal 2024, 483, 149434. https://doi.org/10.1016/j.cej.2024.149434.
[162]
Miao Yi, Zheng Shuzhe, Qi Jiaqi, Xiao Mingyi, Tan Mingwu, Hu Zhongting, Li Xiaonian, Tian Jinshu, Zhu Yihan. Deactivation mechanisms and mitigation strategies for nickel-based acetylene semi-hydrogenation catalysts, Catalysis Science & Technology 2025. https://doi.org/10.1039/D5CY00098J.
[163]
Lang Zhiquan, Wang Xixi, Jabeen Sobia, Cheng Yuanyuan, Liu Naiyun, Liu Zhenhui, Gan Tao, Zhuang Zechao, Li Haitao, Wang Dingsheng. Destabilization of single-atom catalysts: characterization, mechanisms, and regeneration strategies, Advanced Materials 2025, 37, 2418942. https://doi.org/10.1002/adma.202418942.
[164]
Sun Xuejiao, Chen Cai, Xiong Can, Zhang Congmin, Zheng Xusheng, Wang Jin, Gao Xiaoping, Yu Zhen-Qiang, Wu Yuen. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection, Nano Research 2023, 16, 917-924. https://doi.org/10.1007/s12274-022-4802-8.
[165]
Bai Jirong, Lian Yuebin, Deng Yaoyao, Xiang Mei, Xu Peng, Zhou Quanfa, Tang Yawen, Su Yaqiong. Simultaneous integration of Fe clusters and NiFe dual single atoms in nitrogen-doped carbon for oxygen reduction reaction, Nano Research 2024, 17, 2291-2297. https://doi.org/10.1007/s12274-023-6038-7.
[166]
Wang Xin-Yu, Pan Yong-Zhou, Yang Jiarui, Li Wen-Hao, Gan Tao, Pan Ying-Ming, Tang Hai-Tao, Wang Dingsheng. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis, Angewandte Chemie International Edition 2024, 63, e202404295. https://doi.org/10.1002/anie.202404295.
[167]
Liu Tianhao, Guo Jingyi, Wu Aiping, Shen Di, Fan Yuying, Fu Yu, Liang Zhijian, Wang Dongxu, Xie Ying, Tian Chungui. Single-atom Ru confined in self-supported mesoporous carbon films for efficient and stable acidic oxygen evolution, Chemical Engineering Journal 2025, 512, 162387. https://doi.org/10.1016/j.cej.2025.162387.
[168]
Q. Mu Xueqin, L. Liu Suli, Y Mengyang, Zhang, C Zechao, Zhuang, Chen Ding, R. Liao Yuru, Y. Zhao Hongyu, C. Mu Shichun, S. Wang Dingsheng, H. Dai. Zhihui. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation, Angewandte Chemie International Edition 2024, 63, e202319618. https://doi.org/10.1002/anie.202319618.
[169]
Li Shuying, Zhang Gong, Ma Xiao, Gao Hui, Fu Donglong, Wang Tuo, Zeng Jianrong, Zhao Zhi-Jian, Zhang Peng, Gong Jinlong. Atomically isolated pd sites promote electrochemical CO reduction to acetate through a protonation-regulated mechanism, Journal of the American Chemical Society 2024, 146, 31927-31934. https://doi.org/10.1021/jacs.4c11276.
[170]
Tang Minhao, Shen Ji, Zhang Fengtao, Zhao Yanfei, Gan Tao, Zeng Wei, Li Rongxiang, Wang Dingsheng, Han Buxing, Liu Zhimin. Upcycling of polyamide wastes to tertiary amines using Mo single atoms and Rh nanoparticles, Angewandte Chemie International Edition 2025, 64, e202416436. https://doi.org/10.1002/anie.202416436.
[171]
Xia Junkai, Xu Jiawei, Yu Bing, Liang Xiao, Qiu Zhen, Li Hao, Feng Huajun, Li Yongfu, Cai Yanjiang, Wei Haiyan, Li Haitao, Xiang Hai, Zhuang Zechao, Wang Dingsheng. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase, Angewandte Chemie International Edition 2024, 63, e202412740. https://doi.org/10.1002/anie.202412740.
[172]
C. Gerber Iann, Serp Philippe. A theory/experience description of support effects in carbon-supported catalysts, Chemical Reviews 2020, 120, 1250-1349. https://doi.org/10.1021/acs.chemrev.9b00209.
[173]
Yang Hongcen, Lu Niandi, Zhang Juntao, Wang Rui, Tian Shuhao, Wang Mengjun, Wang Zhixia, Tao Kun, Ma Fei, Peng Shanglong. Ultra-low single-atom Pt on g-C3N4 for electrochemical hydrogen peroxide production, Carbon Energy 2023, 5, e337. https://doi.org/10.1002/cey2.337.
[174]
Dong Shuai, Liu Hao, Liu Xinyuan, Li Chaoqun, Gao Zhengyang, Liu Bogu, Yang Weijie, Wu Ying. Facile dehydrogenation of MgH2 enabled by γ-graphyne based single-atom catalyst, Journal of Energy Storage 2023, 74, 109484. https://doi.org/10.1016/j.est.2023.109484.
[175]
Lv Liyang, Tan Hao, Kong Yuan, Tang Bing, Ji Qianqian, Liu Yuying, Wang Chao, Zhuang Zechao, Wang Huijuan, Ge Min, Fan Minghui, Wang Dingsheng, Yan Wensheng. Breaking the scaling relationship in C-N coupling via the doping effects for efficient urea electrosynthesis, Angewandte Chemie International Edition 2024, 63, e202401943. https://doi.org/10.1002/anie.202401943.
[176]
Cui Xinkang, Liu Kaiwei, Han Yajing, Wang Liqiang. Rational design of single-atom catalysts for efficient hydrogenation of nitro compounds, Chemical Synthesis 2025, 5, 79. https://doi.org/10.20517/cs.2025.71.
[177]
Ma Fengya, Zhang Pengfang, Zheng Xiaobo, Chen Liang, Li Yunrui, Zhuang Zechao, Fan Yameng, Jiang Peng, Zhao Hui, Zhang Jiawei, Dong Yuming, Zhu Yongfa, Wang Dingsheng, Wang Yao. Steering the site distance of atomic Cu-Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity, Angewandte Chemie International Edition 2024, 63, e202412785. https://doi.org/10.1002/anie.202412785.
[178]
Dong Shuai, Li Chaoqun, Lv Erfei, Wang Jinhui, Liu Hao, Gao Zhengyang, Xiong Wei, Ding Zhao, Yang Weijie, Li Hao. MgH2/single-atom heterojunctions: effective hydrogen storage materials with facile dehydrogenation, Journal of Materials Chemistry A 2022, 10, 19839-19851. https://doi.org/10.1039/D2TA02111K.
[179]
Yang Jiarui, Zhu Chenxi, Li Wen-Hao, Zheng Xusheng, Wang Dingsheng. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions, Angewandte Chemie International Edition 2024, 63, e202314382. https://doi.org/10.1002/anie.202314382.
[180]
Liu Kaiyuan, Chen Pengwan, Sun Zhiyi, Chen Wenxing, Zhou Qiang, Gao Xin. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production, Nano Research 2023, 16, 10724-10741. https://doi.org/10.1007/s12274-023-5823-7.
[181]
Israr Muhammad, Humayun Muhammad, Zhang Jiaqi, Shah Khadim, Tan Xin, Chen Chen, Li Yadong. Ir single atoms on NiFeZn-LDH matrix for exceptional oxygen evolution reaction, Nano Research 2024, 17, 7039-7044. https://doi.org/10.1007/s12274-024-6749-4.
[182]
Li Mingyao, Hu Weilin, Wang Boyu, Li Yusen, Jian Wenyuan, Hao Jie, Chen Long, Jia Chuancheng, Guo Xuefeng. Mechanism of hydrogen generation catalyzed by a single atom and its spin regulation, Journal of the American Chemical Society 2025, 147, 6193-6202. https://doi.org/10.1021/jacs.4c17722.
[183]
Liu Hao, Chen Lin, Zhu Hao, Sun Qing-Qing, Ding Shi-Jin, Zhou Peng, Wei Zhang David. Atomic layer deposited 2D MoS2 atomic crystals: from material to circuit, Nano Research 2020, 13, 1644-1650. https://doi.org/10.1007/s12274-020-2787-8.
[184]
Qiu Weibin, Qin Shimei, Li Yibao, Cao Ning, Cui Weirong, Zhang Zedong, Zhuang Zechao, Wang Dingsheng, Zhang Yong. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis, Angewandte Chemie International Edition 2024, 63, e202402684. https://doi.org/10.1002/anie.202402684.
[185]
Deng Fengxia, Jiang Jizhou, Sirés Ignasi. State-of-the-art review and bibliometric analysis on electro-fenton process, Carbon Letters 2023, 33, 17-34. https://doi.org/10.1007/s42823-022-00420-z.
[186]
Xu Nuo, Zhou Haoran, Zhang Mingqiang, Ye Yuchuan, Wang Kaiwen, Zhou Yingtang, Zhu Yunfeng, Zhang Yao. Synergistic effect of Pd single atoms and clusters on the de/re-hydrogenation performance of MgH2, Journal of Materials Science and Technology 2024, 191, 49-62. https://doi.org/10.1016/j.jmst.2024.01.009.
[187]
Lu Tiantian, Wang Huan. Graphdiyne-supported metal electrocatalysts: from nanoparticles and cluster to single atoms, Nano Research 2022, 15, 9764-9778. https://doi.org/10.1007/s12274-022-4157-1.
[188]
Zhang Feixiang, Wang Panshuo, Zhu Yandi, Shi Jinlei, Pang Rui, Ren Xiaoyan, Li Shunfang. Highly enhanced room-temperature single-atom catalysis of two-dimensional organic-inorganic multiferroics Cr(half-fluoropyrazine)2 for CO oxidation, Nature Communications 2025, 16, 1580. https://doi.org/10.1038/s41467-025-56863-1.
[189]
Pei Shangkun, Wang Sheng, Lu Yuxin, Li Xiang, Wang Bo. Application of metal-based catalysts for fenton reaction: from homogeneous to heterogeneous, from nanocrystals to single atom, Nano Research 2024, 17, 9446-9471. https://doi.org/10.1007/s12274-024-6973-y.
[190]
Zou Ren. Joshua Adedeji Bolarin, Gangtie Lei, Wenbo Gao, Zhi Li, Hujun Cao, Ping Chen. Microwave-assisted reduction of Ti species in MgH2-TiO2 composite and its effect on hydrogen storage, Chemical Engineering Journal 2022, 450, 138072. https://doi.org/10.1016/j.cej.2022.138072.
[191]
Iliescu I., Skryabina N., Fruchart D., Bes A., Lacoste A.. Morphology and microstructure of Mg-Ti-H films deposited by microwave plasma-assisted co-sputtering, Journal of Alloys and Compounds 2017, 708, 489-499. https://doi.org/10.1016/j.jallcom.2017.03.044.
[192]
Ren Li, Zhu Wen, Zhang Qiuyu, Lu Chong, Sun Fengzhan, Lin Xi, Zou Jianxin. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage, Chemical Engineering Journal 2022, 434, 134701. https://doi.org/10.1016/j.cej.2022.134701.
[193]
Calizzi M., Venturi F., Ponthieu M., Cuevas F., Morandi V., Perkisas T., Bals S., Pasquini L.. Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage, Physical Chemistry Chemical Physics 2015, 18, 141-148.
[194]
Zhang X.L., Liu Y.F., Zhang X., Hu J.J., Gao M.X., Pan H.G.. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Materials Today Nano 2020, 9, 100064. https://doi.org/10.1016/j.mtnano.2019.100064.
[195]
Hou Quanhui, Yang Xinglin, Zhang Jiaqi. Review on hydrogen storage performance of MgH2: development and trends, Chemistryselect 2021, 6, 1589-1606. https://doi.org/10.1002/slct.202004476.
[196]
Xing Xiaofei, Liu Yijin, Zhang Zhao, Liu Tong. Hierarchical structure carbon-coated CoNi nanocatalysts derived from flower-like bimetal MOFs: enhancing the hydrogen storage performance of MgH2 under mild conditions, ACS Sustainable Chemistry & Engineering 2023, 11, 4825-4837. https://doi.org/10.1021/acssuschemeng.2c07740.
[197]
Sun Yahui, Zhang Xiaoyue, Chen Wei, Ye Jikai, Ju Shunlong, Aguey-Zinsou Kondo-Francois, Xia Guanglin, Sun Dalin, Yu Xuebin. Light-driven reversible hydrogen storage in light-weight metal hydrides enabled by photothermal effect, Small 2022, 18, 2202978. https://doi.org/10.1002/smll.202202978.
[198]
Li Zeng-Yi, Sun Li-Xian, Xu Fen, Luo Yu-Mei, Xia Yong-Peng, Wei Sheng, Zhang Chen-Chen, Cheng Ri-Guang, Ye Chao-Feng, Liu Meng-Yuan, Zeng Ju-Lan, Cao Zhong, Pan Hong-Ge. Modulated noble metal/2D MOF heterostructures for improved hydrogen storage of MgH2, Rare Metals 2024, 43, 1672-1685. https://doi.org/10.1007/s12598-023-02496-6.
[199]
Xie Jiaxing, Yao Zhendong, Qi Jiacheng, Gao Ge, Lv Chunju, Li Chao, Fan Meiqiang, Xiao Xuezhang, Chen Lixin. H-/e- cooperative transport mechanism for carbon supported nano hydrogen pump in MgH2, Renewable Energy 2026, 256, 124713. https://doi.org/10.1016/j.renene.2025.124713.
[200]
Zhang Haihua, Cao Zhijie, Zhang Meng, Ma Ling, Wang Xiaomeng. Critical role of TiB2@C on facilitating the dehydrogenation of alanates, Applied Surface Science 2025, 711, 164022. https://doi.org/10.1016/j.apsusc.2025.164022.
[201]
Ismail M., Yahya M.S., Sazelee N.A., Ali N.A., Yap F.A. Halim, Mustafa N.S.. The effect of K2SiF6 on the MgH2 hydrogen storage properties, Journal of Magnesium and Alloys 2020, 8, 832-840. https://doi.org/10.1016/j.jma.2020.04.002.
[202]
Cai Jianghao, Wang Haobo, Tang Xiaotian, Miao Ziwei, Yao Tongao, Liu Yuxuan, Wang Hongtao, Gao Zhengyang, Yang Weijie. Data-driven evidence for the burst effect in MgH2 dehydrogenation via analysis of experimental kinetic curves, Journal of Energy Storage 2025, 136, 118450. https://doi.org/10.1016/j.est.2025.118450.
[203]
Wang Li, Wu Fuying, Chen Daifen, Bian Ting, Senin Petr, Zhang Liuting. Amorphous scaly high-entropy borides with electron traps for efficient catalysis in solid-state hydrogen storage, International Journal of Minerals, Metallurgy, and Materials 2025, 32, 2713-2722. https://doi.org/10.1007/s12613-024-3033-2.
[204]
Fu Yaokun, Zhang Lu, Li Yuan, Guo Sanyang, Yu Han, Wang Wenfeng, Ren Kailiang, Zhang Wei, Han Shumin. Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2, Journal of Magnesium and Alloys 2023, 11, 2927-2938. https://doi.org/10.1016/j.jma.2021.11.033.
[205]
Qin Yang, Hu Jia, Yang Zimeng, Han Chao, Long Shiteng, Zhang Dingfei, Chen Yu’an, Pan Fusheng. Constructing VO/V2O3 interface to enhance hydrogen storage performance of MgH2, Journal of Magnesium and Alloys 2024, 12, 4877-4886. https://doi.org/10.1016/j.jma.2024.02.012.
[206]
Zhu Xueqin, Yang Minjian, Yue Ruiting, Zhang Dasheng, Li Faguo, Wang Danna, Ma Liqiang. Effect of co-doping graphene and anthracite on hydrogen storage of Mg/MgH2, Solid State Sciences 2024, 147, 107385. https://doi.org/10.1016/j.solidstatesciences.2023.107385.
[207]
Yang Zhicheng, Sun Weiqi, Bu Yiting, Zhang Ruoyang, Yang Zexuan, Li Bin, Sun Lixian, Xu Fen, Yu Ting, Guo Wenwei, Liu Yi, Liang Zhengyi. MOF-derived TiO2 nanosheets loaded with Nb2O5 for enhanced catalytic hydrogenation of MgH2, Chemical Engineering Journal 2025, 522, 167955. https://doi.org/10.1016/j.cej.2025.167955.
[208]
Shi Weitao, Hong Feifan, Li Renhuan, Zhao Ruolin, Ding Sizhi, Liu Ziqi, Qing Peilin, Fan Yi, Liu Haizhen, Guo Jin, Lan Zhiqiang. Improved hydrogen storage properties of MgH2 by mxene (Ti3C2) supported MnO2, Journal of Energy Storage 2023, 72, 108738. https://doi.org/10.1016/j.est.2023.108738.
[209]
Wan Haiyi, Yang Xiu, Zhou Shiming, Ran Lei, Lu Yangfan, Chen Yu’an, Wang Jingfeng, Pan Fusheng. Enhancing hydrogen storage properties of MgH2 using FeCoNiCrMn high entropy alloy catalysts, Journal of Materials Science and Technology 2023, 149, 88-98. https://doi.org/10.1016/j.jmst.2022.11.033.
[210]
Jiang Yi, Si Nan, Jiang Wei, Wang Zan, Zhang Hui. FeNiCu-based composite catalyst for hydrogen storage in MgH2, Chemical Engineering Journal 2024, 499, 156449. https://doi.org/10.1016/j.cej.2024.156449.
[211]
Liu Chenxu, Yuan Zeming, Li Xiaoming, Sun Yize, Zhai Tingting, Han Zhonggang, Zhang Liwen, Li Tao. Review on improved hydrogen storage properties of MgH2 by adding new catalyst, Journal of Energy Storage 2024, 97, 112786. https://doi.org/10.1016/j.est.2024.112786.
[212]
Bu Fanqi, Wang Zhenyu, Wajid Ali, Zhai Rui, Liu Ting, Li Yaohua, Ji Xin, Liu Xin, Ding Shujiang, Cheng Yonghong, Zhang Jinying. Solid-state hydrogen storage materials with excellent selective hydrogen adsorption in the presence of alkanes, oxygen, and carbon dioxide by atomic layer amorphous Al2O3 encapsulation, Nano-Micro Letters 2025, 18, 78.. https://doi.org/10.1007/s40820-025-01934-7.
[213]
Wu Ping, Xiao Lirong, Jiang Manfu, Liu Li, Ni Cui, Hou Chuanxin, Liu Hu, Du Wei, Xie Xiubo. Facile fabrication of hollow cubic NiCo2O4 loaded NiS towards hydrogen storage performances improvement of MgH2, Applied Surface Science 2025, 714, 164496. https://doi.org/10.1016/j.apsusc.2025.164496.
[214]
Jangir Mukesh P. Jain Indra. Daniele Mirabile Gattia. Effect of Ti-based additives on the hydrogen storage properties of MgH2: a review, Hydrogen 2023, 4, 523-541. https://doi.org/10.3390/hydrogen4030034.
[215]
Yao Pengyang, Jiang Ying, Liu Yang, Wu Chengzhang, Chou Kuo-Chih, Lyu Tao, Li Qian. Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2, Journal of Magnesium and Alloys 2020, 8, 461-471. https://doi.org/10.1016/j.jma.2019.06.006.
[216]
Xue Xuebing, Sheng Peng, Feng Dianchen, Sun Wei, Li Jun, Cao Zheng, Zhang Yanghuan. Thermodynamic and kinetic assessment of Ni-substituted Mg-based alloys for hydrogen storage, Energy Technology 2025, e202501076. https://doi.org/10.1002/ente.202501076.
[217]
Qi Yichen, Zhang Zeyang, Tang Qinke, Liu Jiangchuan, Shi Rui, Zhang Jiguang, Liu Yana, Wang Jun, Zhang Jiankun, Chen Shihao, Zhu Yunfeng. Synergistic effect of the hydrogen pump and heterostructure enables superior hydrogen storage performance of MgH2, Chemistry of Materials 2024, 36, 6288-6298. https://doi.org/10.1021/acs.chemmater.4c01234.
[218]
Long Shiteng, Qin Yang, Fu Huafeng, Hu Jia, Xue Hansong, Chen Yu’an, Pan Fusheng. Hydrogen storage properties of MgH2 modified by efficient Co3V2O8 catalyst, Separation and Purification Technology 2024, 341, 126901. https://doi.org/10.1016/j.seppur.2024.126901.
[219]
Dan Liang, Wang Hui, Yang Xiaobao, Liu Jiangwen, Ouyang Liuzhang, Zhu Min. Low-temperature solid-state hydrogen storage via efficiently catalyzed MgH2, Renewable Energy 2024, 231, 121009. https://doi.org/10.1016/j.renene.2024.121009.
[220]
Rahwanto A., Ismail I., Nurmalita N., Mustanir, Jalil Z.. Nanoscale Ni as a catalyst in MgH2 for hydrogen storage material, Journal of Physics: Conference Series 2021, 1882, 12010. https://doi.org/10.1088/1742-6596/1882/1/012010.
[221]
Zhang Tianyu, Wang Dingsheng, Liu Junfeng. Periodic single-metal site catalysts: creating homogeneous and ordered atomic-precision structures, Advanced Materials 2024, 36, 2408259. https://doi.org/10.1002/adma.202408259.
[222]
Yang Hongchen, Duan Pengfei, Zhuang Zechao, Luo Yaowu, Shen Ji, Xiong Yuli, Liu Xiangwen, Wang Dingsheng. Understanding the dynamic evolution of active sites among single atoms, clusters, and nanoparticles, Advanced Materials 2025, 37, 2415265. https://doi.org/10.1002/adma.202415265.
[223]
Zhao Jian, Zhang Yuxiao, Zhuang Zechao, Deng Yating, Gao Ge, Li Jiayi, Meng Alan, Li Guicun, Wang Lei, Li Zhenjiang, Wang Dingsheng. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics, Angewandte Chemie International Edition 2024, 63, e202404968. https://doi.org/10.1002/anie.202404968.
[224]
Li Qian, Lu Yangfan, Luo Qun, Yang Xiaohua, Yang Yan, Tan Jun, Dong Zhihua, Dang Jie, Li Jianbo, Chen Yuan, Jiang Bin, Sun Shuhui, Pan Fusheng. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, Journal of Magnesium and Alloys 2021, 9, 1922-1941. https://doi.org/10.1016/j.jma.2021.10.002.
[225]
Liu Haizhen, Lu Chenglin, Wang Xinchun, Xu Li, Huang Xiantun, Wang Xinhua, Ning Hua, Lan Zhiqiang, Guo Jin. Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2, ACS Applied Materials & Interfaces 2021, 13, 13235-13247. https://doi.org/10.1021/acsami.0c23150.
[226]
Chi Dinh Linh, Dinh Doan Phuong, Lai Duy Van, Van Nguyen Toan, Thi Pham Trang. Van Thi Hong Phung, Matteo Tonezzer, Duong Duc La, Tung Thanh Nguyen, Trung Bao Tran. Efficient hydrogen storage with nanocrystalline Mg-Ni alloy: enhanced absorption and kinetics via mechanochemical synthesis, Journal of Materials Science 2025, 60, 21457-21472. https://doi.org/10.1007/s10853-025-11628-5.
[227]
Yang Xinglin, Li Wenxuan, Zhang Jiaqi, Hou Quanhui. Hydrogen storage performance of Mg/MgH2 and its improvement measures: research progress and trends, Materials 2023, 16, 1587. https://doi.org/10.3390/ma16041587.
[228]
Thongtan Puttimate, Thiangviriya Sophida, Utke Oliver, Utke Rapee. MgH2-based hydrogen storage tank: kinetics, reversibility, and MWCNTs content, Journal of Physics and Chemistry of Solids 2022, 163, 110578. https://doi.org/10.1016/j.jpcs.2022.110578.
[229]
Zhou Chengshang, Li Ke, Huang Tongwen, Sun Pei, Wang Li, Lu Yanshan, Zak Fang Zhigang. in situ formation of nanocrystalline MgH2 through room temperature hydrogenation, Materials & Design 2022, 218, 110729. https://doi.org/10.1016/j.matdes.2022.110729.
[230]
Han Jin, Xu Maowen, Niu Yubin, Li Guan-Nan, Wang Minqiang, Zhang Yan, Jia Min, Li Chang ming. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries, Chemical Communications 2016, 52, 11274-11276. https://doi.org/10.1039/C6CC05102B.
[231]
Liu Ziqi, Zhao Ruolin, Hong Feifan, Ding Sizhi, Yang Jiakun, Li Renhuan, Fan Yi, Liu Haizhen, Guo Jin, Lan Zhiqiang. Carbon-supported TiN composites serve as catalysts to enhance the (de)hydrogenation kinetics of MgH2, Journal of Energy Storage 2024, 83, 110760. https://doi.org/10.1016/j.est.2024.110760.
[232]
Liu Fang, Wang Jiali, Chen Wei, Zhang Xiaoying, Li Shengting, Li Jinping, Song Yu-Fei, Chu Jinfeng, Liu Guang. In-situ formed Ti/TiH2 from exfoliated few-layered Ti3C2Tx as hydrogen pump enhances the hydrogen storage properties of MgH2, Journal of Colloid and Interface Science 2025, 700, 138335. https://doi.org/10.1016/j.jcis.2025.138335.
[233]
Wan Haiyi, Zhou Shiming, Wei Dan, Qiu Junqi, Ding Zhao, Chen Yu’an, Wang Jingfeng, Pan Fusheng. Enhancing hydrogen storage properties of MgH2 via reaction-induced construction of Ti/Co/Mn-based multiphase catalytic system, Separation and Purification Technology 2025, 355, 129776. https://doi.org/10.1016/j.seppur.2024.129776.
[234]
Dong Chenjie, Li Guansheng, Zhu Jiajing, Cui Jie, Huang Liangjun, Wang Hui. Achieving superior hydrogen sorption kinetics of MgH2 by addition of Ni-doped TiO2 catalysts, Journal of Alloys and Compounds 2025, 1010, 177104. https://doi.org/10.1016/j.jallcom.2024.177104.
[235]
Shi Qingyun, Gao Yuxing, Zhao Shaolei, Zhang Chunmin, Liu Cong, Wang Chunli, Wang Shaohua, Li Yongzhi, Yin Dongming, Wang Limin, Cheng Yong. Interfacial engineering of fluorinated TiO2 nanosheets with abundant oxygen vacancies for boosting the hydrogen storage performance of MgH2, Small 2024, 20, 2307965. https://doi.org/10.1002/smll.202307965.
[236]
Sun Wei, Zhang Xin, Li Jun, Cao Zheng, Feng Dianchen, Peng Jun, Qi Yan, Zhao Dongliang, Zhang Yanghuan. Catalytic effect of TiF3 on hydrogenation and dehydrogenation of Mg-based hydrogen storage alloy prepared by milling, Journal of Physics and Chemistry of Solids 2025, 201, 112626. https://doi.org/10.1016/j.jpcs.2025.112626.
[237]
Yong Hui, Chen Yiwan, Ji Yanquan, Wang Shuai, Ma Jiangwei, Liu Baosheng, Hu Jifan, Zhang Yanghuan. In-situ influence of TiF3 catalyst on the hydrogen storage behavior of Mg-Ni-Y based alloy, Journal of Energy Storage 2024, 77, 110022. https://doi.org/10.1016/j.est.2023.110022.
[238]
Lu Heng, Li Jianbo, Xie Tianyu, Zhou Xiang, Ding Zhao, Lu Yangfan, Chen Yu’an, Liu Zhongqing, Li Qian, Pan Fusheng. Synergistic catalytic effects of AlH3-TiF3 composites on the hydrogen storage performance of MgH2, Journal of Physical Chemistry C 2023, 127, 92-98. https://doi.org/10.1021/acs.jpcc.2c07370.
[239]
Chen Yongpeng, Zhou Panpan, Bi Jiapeng, Zhu Liuhui, Zhang Lingchao, Yan Chengguo, Jia Yuxiao, Xiao Xuezhang, Wang Xinhua, Chen Lixin. Different poisoning behaviors of impurity gases on AB2-type Ti-based hydrogen storage alloys and their mechanisms, Journal of Energy Chemistry 2026, 114, 350-361. https://doi.org/10.1016/j.jechem.2025.10.033.
[240]
Ping Jiehong, Wang Shuai, Shen Xinlong, Yang Guo, Zhang Caiyi, Li Yejun, Leng Haiyan, Han Xingbo. Effect of La doping on tritium storage properties of Ti-based alloys, Progress in Natural Science: Materials International 2025, 35, 934-943. https://doi.org/10.1016/j.pnsc.2025.07.005.
[241]
Shen Shaoyang, Li Yongan, Ouyang Liuzhang, Zhang Lan, Zhu Min, Liu Zongwen. V-Ti-based solid solution alloys for solid-state hydrogen storage, Nano-Micro Letters 2025, 17, 175. https://doi.org/10.1007/s40820-025-01672-w.
[242]
Youp Song Myoung, Choi Eunho. Effects of milling in hydrogen on magnesium hydride with a hydride-forming titanium additive, Materials Science 2021, 27, 184-191. https://doi.org/10.5755/j02.ms.25056.
[243]
Choi Eunho, Youp Song Myoung. Hydriding and dehydriding features of a titanium-added magnesium hydride composite, Materials Science 2020, 26, 6. https://doi.org/10.5755/j01.ms.26.2.22299.
[244]
Patelli Nicola, Migliori Andrea, Pasquini Luca. Reversible metal-hydride transformation in Mg-Ti-H nanoparticles at remarkably low temperatures, ChemPhysChem 2019, 20, 1325-1333. https://doi.org/10.1002/cphc.201801186.
[245]
Yu Fang, Xu Fen, Sun Li Xian, Fei Zhang Xiang, Wang Lin, Fan Ming Hui. The effect of AlCl3 and Ti on hydrogen storage performance of 4MgH2-Li3AlH6 system, Materials Science Forum 2016, 852, 876-882. https://doi.org/10.4028/www.scientific.net/MSF.852.876.
[246]
Asano Kohta, J Ruud, Westerwaal, Anastasopol Anca, P.A. Lennard, Mooij, Boelsma Christiaan, Ngene Peter, Schreuders Herman, W.H. Eijt Stephan, Dam Bernard. Destabilization of Mg hydride by self-organized nanoclusters in the immiscible Mg-Ti system, The Journal of Physical Chemistry C 2015, 119, 12157-12164. https://doi.org/10.1021/acs.jpcc.5b02275.
[247]
Khodaparast V., Rajabi M.. Hydrogen desorption properties of MgH2-5 Wt% Ti-Mn-Cr composite via combined melt spinning and mechanical alloying, Procedia Materials Science 2015, 11, 611-615. https://doi.org/10.1016/j.mspro.2015.11.092.
[248]
Kitabayashi Kouki, Edalati Kaveh, Li Hai‐Wen, Akiba Etsuo, Horita Zenji. Phase transformations in MgH2-TiH2 hydrogen storage system by high‐pressure torsion process, Advanced Engineering Materials 2020, 22, 1900027. https://doi.org/10.1002/adem.201900027.
[249]
Patelli Nicola, Migliori Andrea, Morandi Vittorio, Pasquini Luca. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage, Nano Energy 2020, 72, 104654. https://doi.org/10.1016/j.nanoen.2020.104654.
[250]
Pukazhselvan D.. Karakkadparambil Sankaran Sandhya, Devaraj Ramasamy, Aliaksandr Shaula, Duncan Paul Fagg. Transformation of metallic Ti to TiH2 phase in the Ti/MgH2 composite and its influence on the hydrogen storage behavior of MgH2, ChemPhysChem 2020, 21, 1195-1201. https://doi.org/10.1002/cphc.202000031.
[251]
Rizo-Acosta Pavel, Cuevas Fermin, Latroche Michel. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium, Journal of Materials Chemistry A 2019, 7, 23064-23075. https://doi.org/10.1039/c9ta05440e.
[252]
Patelli Nicola, Calizzi Marco, Migliori Andrea, Morandi Vittorio, Pasquini Luca. Hydrogen desorption below 150 °C in MgH2-TiH2 composite nanoparticles: equilibrium and kinetic properties, The Journal of Physical Chemistry C 2017, 121, 11166-11177. https://doi.org/10.1021/acs.jpcc.7b03169.
[253]
Hu Xuechun, Chen Xiaowei, Zhang Xiaoyue, Meng Yang, Xia Guanglin, Yu Xuebin, Sun Dalin, Fang Fang. in situ construction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of MgH2, Advanced Science 2024, 11, 2400274. https://doi.org/10.1002/advs.202400274.
[254]
Jangir Mukesh, Jain Ankur, Agarwal Shivani, Zhang Tengfei, Kumar Sanjay, Selvaraj Suganthamalar. Takayuki Ichikawa, I. P. Jain. The enhanced de/re-hydrogenation performance of MgH2 with TiH2 additive, International Journal of Energy Research 2018, 42, 1139-1147. https://doi.org/10.1002/er.3911.
[255]
Sun Wenpei. The hydrogen storage performance of a 4MgH2LiAlH4TiH2 composite system, Journal of Alloys and Compounds 2016, 676, 557-564. https://doi.org/10.1016/j.jallcom.2016.03.194.
[256]
Lotoskyy Mykhaylo, Denys Roman, A Volodymyr, Yartys, Eriksen Jon, Goh Jonathan. Serge Nyallang Nyamsi, Cordellia Sita, Franscious Cummings. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance, Journal of Materials Chemistry A 2018, 6, 10740-10754. https://doi.org/10.1039/C8TA02969E.
[257]
Zhou Chengshang, Zak Fang Zhigang, C Robert, Bowman. Stability of catalyzed magnesium hydride nanocrystalline during hydrogen cycling. part I: kinetic analysis, The Journal of Physical Chemistry C 2015, 119, 22261-22271. https://doi.org/10.1021/acs.jpcc.5b06190.
[258]
Zhang Liuting, Lu Xiong, Ji Liang, Yan Nianhua, Sun Ze, Zhu Xinqiao. Catalytic effect of facile synthesized TiH1. 971 nanoparticles on the hydrogen storage properties of MgH2, Nanomaterials 2019, 9, 1370. https://doi.org/10.3390/nano9101370.
[259]
Pan Yong. Theoretical discovery of high capacity hydrogen storage metal tetrahydrides, International Journal of Hydrogen Energy 2019, 44, 18153-18158. https://doi.org/10.1016/j.ijhydene.2019.05.145.
[260]
Zhang Yao, Zhuang Xiangyang, Zhu Yunfeng, Wan Neng, Li Liquan, Dong Jun. Synergistic effects of TiH2 and Pd on hydrogen desorption performances of MgH2, International Journal of Hydrogen Energy 2015, 40, 16338-16346. https://doi.org/10.1016/j.ijhydene.2015.09.029.
[261]
Zhang Liuting. Excellent catalysis of Mn3O4 nanoparticles on the hydrogen storage properties of MgH2: an experimental and theoretical study, Nanoscale Advances 2020, 2, 1666-1675. https://doi.org/10.1039/D0NA00137F.
[262]
Liu Meichen, Lei Zhiping, Ke Qingping, Cui Peixin, Wang Jiancheng, Yan Jingchong, Li Zhanku, Shui Hengfu, Ren Shibiao, Wang Zhicai, Kong Ying, Kang Shigang. Regulation of hydrogen evolution performance of titanium oxide-carbon composites at high current density with a Ti-O hybrid orbital, Carbon Energy 2022, 4, 480-490. https://doi.org/10.1002/cey2.162.
[263]
Chen Man, Xiao Xuezhang, Zhang Meng, Mao Jianfeng, Zheng Jiaguang, Liu Meijia, Wang Xuancheng, Chen Lixin. Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2, Materials Today Energy 2020, 16, 100411. https://doi.org/10.1016/j.mtener.2020.100411.
[264]
Jardim P.M., Conceição M.O.T. da, Brum M.C., Santos D.S. dos. Hydrogen sorption kinetics of ball-milled MgH2-TiO2 based 1D nanomaterials with different morphologies, International Journal of Hydrogen Energy 2015, 40, 17110-17117. https://doi.org/10.1016/j.ijhydene.2015.06.172.
[265]
Shao Yuting, Gao Haiguang, Tang Qinke, Liu Yana, Liu Jiangchuan, Zhu Yunfeng, Zhang Jiguang, Li Liquan, Hu Xiaohui, Ba Zhixin. Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2, Applied Surface Science 2022, 585, 152561. https://doi.org/10.1016/j.apsusc.2022.152561.
[266]
Pukazhselvan D.. Narendar Nasani, Pedro Correia, Enrique Carbó-Argibay, Gonzalo Otero-Irurueta, Daniel G. Stroppa, Duncan Paul Fagg. Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2, Journal of Power Sources 2017, 362, 174-183. https://doi.org/10.1016/j.jpowsour.2017.07.032.
[267]
Pukazhselvan D.. Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2, Applied Surface Science 2017, 420, 6. https://doi.org/10.1016/j.apsusc.2017.05.182.
[268]
Dai Min. Joshua Adedeji Bolarin, Gangtie Lei, Zhi Li, Teng He, Hujun Cao, Ping Chen. Potassium hydride reduced black TiO2-x for boosting the hydrogenation of magnesium at room temperature, Journal of Alloys and Compounds 2022, 897, 162750. https://doi.org/10.1016/j.jallcom.2021.162750.
[269]
Vujasin Radojka, Mraković Ana, Kurko Sandra, Novaković Nikola, Matović Ljiljana. Jasmina Grbović Novaković Sanja Milošević. Catalytic activity of titania polymorphs towards desorption reaction of MgH2, International Journal of Hydrogen Energy 2016, 41, 4703-4711. https://doi.org/10.1016/j.ijhydene.2016.01.095.
[270]
Kumar Sanjay. Tailoring the hydrogen absorption desorption’s dynamics of Mg-MgH2 system by titanium suboxide doping, International Journal of Hydrogen Energy 2017, 42, 8. https://doi.org/10.1016/j.ijhydene.2017.07.128.
[271]
Sun Ze, Lu Xiong. Farai Michael Nyahuma, Nianhua Yan, Jiankun Xiao, Shichuan Su, Liuting Zhang. Enhancing hydrogen storage properties of MgH2 by transition metals and carbon materials: a brief review, Frontiers in Chemistry 2020, 8, 552. https://doi.org/10.3389/fchem.2020.00552.
[272]
Xing Xiaofei, Wei Mingxing, Cao Boyuan, Zhang Zhao, Liu Tong. Simultaneously nanoconfining Mg and loading multiple metal single atoms catalysts with N-doped carbon to achieve room-temperature dehydrogenation, Small 2025, 21 (47), e08519. https://doi.org/10.1002/smll.202508519.
[273]
Lu Xiaohui, Yang Xinglin, Liang Xiaoxu, Hou Quanhui, Kong Jie, Su Jianye. TiO2_ZnTiO3 with carbon nanotubes catalytically improve the hydrogen storage characteristics of MgH2, Journal of Power Sources 2024, 623, 235455. https://doi.org/10.1016/j.jpowsour.2024.235455.
[274]
Zhang Xin, Leng Zihan, Gao Mingxia, Hu Jianjiang, Du Fang, Yao Jianhua, Pan Hongge, Liu Yongfeng. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, Journal of Power Sources 2018, 398, 183-192. https://doi.org/10.1016/j.jpowsour.2018.07.072.
[275]
Zhang Meng. Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride, Materials Today Energy 2019, 12, 146-154. https://doi.org/10.1016/j.mtener.2019.01.001.
[276]
Plerdsranoy Praphatsorn, Chanthee Songwuit, Utke Rapee. Compaction of LiBH4-MgH2 doped with MWCNTs-TiO2 for reversible hydrogen storage, International Journal of Hydrogen Energy 2017, 42, 978-986. https://doi.org/10.1016/j.ijhydene.2016.11.066.
[277]
Puszkiel J.A., Riglos M.V. Castro, Karimi F., Santoru A., Pistidda C., Klassen T., Colbe J.M. Bellosta von, Dornheim M.. Changing the dehydrogenation pathway of LiBH4-MgH2 via nanosized lithiated TiO2, Physical Chemistry Chemical Physics 2017, 19, 7455-7460. https://doi.org/10.1039/C6CP08278E.
[278]
Yuan Hongxin, Hua Jianxin, Wei Wei, Zhang Miao, Hao Yue, Chang Jingjing. Progress and prospect of flexible MXene-based energy storage, Carbon Energy 2025, 7, e639. https://doi.org/10.1002/cey2.639.
[279]
Fei Ling, Lei Lei, Xu Hui, Guo Xinghua, Chen Bo, Han Xu, Chen Xun, Huang Qing, Wang Degao. Ion transport behaviors in MXenes for electrochemical energy storage and conversion, Carbon Energy 2025, e678. https://doi.org/10.1002/cey2.678.
[280]
Deng Yanli, Chen Yaqing, Liu Wei, Wu Lili, Wang Zhou, Xiao Dan, Meng Decheng, Jiang Xingguo, Liu Jiurong, Zeng Zhihui, Wu Na, Energy Carbon. Transparent electromagnetic interference shielding materials using MXene, 2024, 6, e593. https://doi.org/10.1002/cey2.593.
[281]
Cai Yanqing, Chen Xinggang, Xu Ying, Zhang Yalin, Liu Huijun, Zhang Hongjuan, Tang Jing. Ti3C2T MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives, Carbon Energy 2024, 6, e501. https://doi.org/10.1002/cey2.501.
[282]
Duan Xing-Qing, Li Guang-Xu, Zhang Wen-Hui, Luo Hui, Tang Hai-Mei, Xu Li, Sheng Peng, Wang Xin-Hua, Huang Xian-Tun, Huang Cun-Ke, Lan Zhi-Qiang, Zhou Wen-Zheng, Guo Jin, Bin Ismail Mohammd, Liu Hai-Zhen. Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: from performance to mechanism, Rare Metals 2023, 42, 1923-1934. https://doi.org/10.1007/s12598-022-02231-7.
[283]
Lakhnik A.M., Kirian I.M., Rud A.D.. The Mg/MAX-phase composite for hydrogen storage, International Journal of Hydrogen Energy 2022, 47, 7274-7280. https://doi.org/10.1016/j.ijhydene.2021.02.081.
[284]
Wang Ke, Du Hufei, Wang Zeyi, Gao Mingxia, Pan Hongge, Liu Yongfeng. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2, International Journal of Hydrogen Energy 2017, 42, 4244-4251. https://doi.org/10.1016/j.ijhydene.2016.10.073.
[285]
Yang Zexuan, Wu Jiaao, Wang Yazhou, Wang Shunxiang, Zou Yongjin, Xiang Cuili, Xu Fen, Sun Lixian, Shen Chua Yong. Improved hydrogen storage performance of magnesium hydride catalyzed by two dimensional Ti3C2-coated NbN, Journal of Alloys and Compounds 2025, 1029, 180752. https://doi.org/10.1016/j.jallcom.2025.180752.
[286]
Lu Xiaohui, Yang Xinglin, Liang Xiaoxu, Su Jianye, Kong Jie, Pan Yijiang, Hou Quanhui. MXene Ti3C2@NiO catalysts for improving the kinetic performance of MgH2 hydrogen storage, Journal of Alloys and Compounds 2025, 1010, 177963. https://doi.org/10.1016/j.jallcom.2024.177963.
[287]
Dai Zi-Yin, Wu Ping, Xiao Li-Rong, Kimura Hideo, Hou Chuan-Xin, Sun Xue-Qin, Guo Si-Jie, Du Wei, Xie Xiu-Bo. Non-stoichiometric Ni3ZnC0. 7 carbide loading on melamine sponge-derived carbon for hydrogen storage performance improvement of MgH2, Rare Metals 2025, 44, 515-530. https://doi.org/10.1007/s12598-024-02943-y.
[288]
Duan Congwen, Su Yaohua, Zhang Ziyan, Cao Yuxuan, Huang Haixiang, Fan Yuchen, Tian Yating, Hu Lianxi, Wang Fei, Li Ming, Wu Ying. A phase-transition catalyst bidirectionally enhances the hydrogen absorption/desorption kinetics of Mg/MgH2, Energy & Fuels 2025, 39 (23), 11437-11454. https://doi.org/10.1021/acs.energyfuels.5c01654.
[289]
Wang Xiaojiao, Yuan Zhenluo, Shi Yang, Li Shangsheng, Mi Guofa, Peng Qiuming, Han Shumin, Fan Yanping, Liu Baozhong.Effective catalytic effects of Mo2C MXene on the hydrogen storage in magnesium hydride, Journal of Magnesium and Alloys 2025. https://doi.org/10.1016/j.jma.2025.04.029.
[290]
Lv Mei-Ling, Zheng Jia-Guang, Xia Ao, Zhang Qing-Bo, Ma Zhen-Xuan, Su Chao, Ge Lei. Bimetallic Ti2NbC2 MXene as an efficient catalyst for reversible hydrogen storage in magnesium hydride, Rare Metals 2025, 44, 2489-2501. https://doi.org/10.1007/s12598-024-03140-7.
[291]
Jia Yuxiao, Wang Xuancheng, Hu Leijie, Xiao Xuezhang, Zhang Shuoqing, He Jiahuan, Qi Jiacheng, Lv Ling, Xu Fen, Sun Lixian, Chen Lixin. Carbon composite support improving catalytic effect of NbC nanoparticles on the low-temperature hydrogen storage performance of MgH2, Journal of Materials Science and Technology 2023, 150, 65-74. https://doi.org/10.1016/j.jmst.2022.11.044.
[292]
Tian Zhihui, Wang Zexuan, Yao Pufan, Xia Chaoqun, Yang Tai, Li Qiang. Hydrogen storage behaviors of magnesium hydride catalyzed by transition metal carbides, International Journal of Hydrogen Energy 2021, 46 (80), 40203-40216. https://doi.org/10.1016/j.ijhydene.2021.09.212.
[293]
Li Jingxiao, Wang Shun, Du Yulei, Liao Wenhe. Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2, International Journal of Hydrogen Energy 2019, 44 (13), 6787-6794. https://doi.org/10.1016/j.ijhydene.2019.01.189.
[294]
Liu Yongfeng, Du Hufei, Zhang Xin, Yang Yaxiong, Gao Mingxia, Pan Hongge. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride, Chemical Communications 2016, 52 (4), 705-708. https://doi.org/10.1039/C5CC08801A.
[295]
El-Eskandarany M.S.. Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders, Energy 2016, 104, 158-170. https://doi.org/10.1016/j.energy.2016.03.104.
[296]
Hu Miaomiao. TiCX-decorated Mg nanoparticles confined in carbon shell: Preparation and catalytic mechanism for hydrogen storage, Journal of Alloys and Compounds 2020, 817, 152813. https://doi.org/10.1016/j.jallcom.2019.152813.
[297]
Zhang Jianfeng, Li Zhinian, Wu Yuanfang, Guo Xiumei, Ye Jianhua, Yuan Baolong, Yuan Huiping, Wang Shumao, Jiang Lijun.Significant thermodynamic destabilization and superior hydrogen storage properties of nanocrystalline Mg-20 wt % Ti-Cr-Vx (x= 0. 4, 0. 6, 0. 8; Ti/Cr = 2: 3) composites synthesized by reactive ball milling, The Journal of Physical Chemistry C 2019, 123, 15963-15976. https://doi.org/10.1021/acs.jpcc.9b03161.
[298]
Wang Chenlu, Hou Xiaojiang, Cao Qianhong, Zhao Duode, Li Danting, Xie Xinlei, Zhu Peixuan, Ye Xiaohui, Suo Guoquan, Yang Guang, Xu Guangsheng. Multi-component synergistic catalytic effect to enhance hydrogen storage kinetic of non-activated MgH2-Ni/Ti3C2Tx composites, Journal of Energy Storage 2025, 132, 117811. https://doi.org/10.1016/j.est.2025.117811.
[299]
Wang Zeyi, Zhang Xuelian, Ren Zhuanghe, Liu Yong, Hu Jianjiang, Li Haiwen, Gao Mingxia, Pan Hongge, Liu Yongfeng. in situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2, Journal of Materials Chemistry A 2019, 7, 14244-14252. https://doi.org/10.1039/C9TA03665B.
[300]
El-Eskandarany M. Sherif. Fahad Al-Ajmi, Mohammad Banyan, Ahmed Al-Duweesh. Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/ 10 wt% TiMn2 binary system, International Journal of Hydrogen Energy 2019, 44, 26428-26443. https://doi.org/10.1016/j.ijhydene.2019.08.093.
[301]
Noor Aliah Abdul Majid, Maeda Naoki, Notomi Mitsuo. Improved hydrogen desorption properties of magnesium hydride with TiFe0. 8Mn0. 2, graphite and iron addition, International Journal of Hydrogen Energy 2019, 44, 29189-29195. https://doi.org/10.1016/j.ijhydene.2019.02.190.
[302]
Mohamed Sherif El-Eskandarany. Metallic glassy Ti2Ni grain-growth inhibitor powder for enhancing the hydrogenation/dehydrogenation kinetics of MgH2, RSC Advances 2019, 9, 1036-1046. https://doi.org/10.1039/C8RA08200F.
[303]
Zhou Chengshang, Zak Fang Zhigang, Sun Pei, Xu Lei, Liu Yong. Capturing low-pressure hydrogen using V Ti Cr catalyzed magnesium hydride, Journal of Power Sources 2019, 413, 139-147. https://doi.org/10.1016/j.jpowsour.2018.12.048.
[304]
Nachev S.. Mechanical behavior of highly reactive nanostructured MgH2, Int. J. Hydrogen Energy 2015, 40, 17065-17074. https://doi.org/10.1016/j.ijhydene.2015.05.022.
[305]
Kral L., Cermak J.. Improvement of hydrogen storage properties of Mg by catalytic effect of Al-containing phases in Mg-Al-Ti-Zr-C powders, International Journal of Hydrogen Energy 2019, 44, 13561-13568. https://doi.org/10.1016/j.ijhydene.2019.03.188.
[306]
Zhang Liuting. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes, Applied Surface Science 2020, 504, 144465. https://doi.org/10.1016/j.apsusc.2019.144465.
[307]
Zavalii І.Yu., Berezovets’ V.V., Denys R.V.. Nanocomposites based on magnesium for hydrogen storage: achievements and prospects (a survey), Materials Science 2019, 54, 611-626. https://doi.org/10.1007/s11003-019-00226-x.
[308]
Lv Haitao, Wang Liangrui, Ou Xiulong, Li Zhiming. Effect of TiS2 on hydrogen absorption and desorption performance of mechanically ball-milled Mg95Ce5 alloy, Symmetry 2025, 17, 71. https://doi.org/10.3390/sym17010071.
[309]
Zhang Xin, Zhang Xuelian, Ren Zhuanghe, Hu Jianjiang, Gao Mingxia, Pan Hongge, Liu Yongfeng. Amorphous-carbon-supported ultrasmall TiB2 nanoparticles with high catalytic activity for reversible hydrogen storage in NaAlH4, Front. Chem. 2020, 8. https://doi.org/10.3389/fchem.2020.00419.
[310]
Dong Chunyang, Li Yinlong, Cheng Danyang, Zhang Mengtao, Liu Jinjia, Wang Yang-Gang, Xiao Dequan, Ma Ding. Supported metal clusters: fabrication and application in heterogeneous catalysis, ACS Catalysis 2020, 10, 11011-11045. https://doi.org/10.1021/acscatal.0c02818.
[311]
Zhang Lina, Zhang Ke, Wang Chengming, Liu Yanyan, Wu Xianli, Peng Zhikun, Cao Huaqiang, Li Baojun, Jiang Jianchun. Advances and prospects in metal-organic frameworks as key nexus for chemocatalytic hydrogen production, Small 2021, 17, 2102201. https://doi.org/10.1002/smll.202102201.
[312]
Guo Bowen, Wang Zekun, Zheng Lei, Mo Guang, Zhou Hongjun, Luo Dan. Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy, Carbon Energy 2024, 6, e554. https://doi.org/10.1002/cey2.554.
[313]
Wang Xin, Yang Xiaoli, Pei Guangxian, Yang Jifa, Liu Junzhe, Zhao Fengwang, Jin Fayi, Jiang Wei, Ben Haoxi, Zhang Lixue. Strong metal-support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride, Carbon Energy 2024, 6, e391. https://doi.org/10.1002/cey2.391.
[314]
Fan Yanping, Yuan Zhenluo, Zou Guodong, Zhang Qingrui, Liu Baozhong, Peng Qiuming. Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate, Catal. Today 2018, 318, 167-174. https://doi.org/10.1016/j.cattod.2017.11.018.
[315]
Zhu Wen, Panda Subrata, Lu Chong, Ma Zhewen, Khan Darvaish, Dong Jinjian, Sun Fengzhan, Xu Hao, Zhang Qiuyu, Zou Jianxin. Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2, ACS Applied Materials & Interfaces 2020, 12, 50333-50343. https://doi.org/10.1021/acsami.0c12767.
[316]
Gao Haiguang, Shao Yuting, Shi Rui, Liu Yana, Zhu Jinglian, Liu Jiangchuan, Zhu Yunfeng, Zhang Jiguang, Li Liquan, Hu Xiaohui. Effect of few-layer Ti3C2Tx supported nano-Ni via self-assembly reduction on hydrogen storage performance of MgH2, ACS Applied Materials & Interfaces 2020, 12, 47684-47694. https://doi.org/10.1021/acsami.0c15686.
[317]
Gao Haiguang, Liu Yana, Zhu Yunfeng, Zhang Jiguang, Li Liquan. Catalytic effect of sandwich-like Ti3C2/TiO2(A)-C on hydrogen storage performance of MgH2, Nanotechnology 2020, 31, 115404. https://doi.org/10.1088/1361-6528/ab5979.
[318]
Song Mengchen, Zhang Liuting, Zheng Jiaguang, Yu Zidong, Wang Shengnan. Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, International Journal of Minerals, Metallurgy and Materials 2022, 29, 1464-1473. https://doi.org/10.1007/s12613-021-2393-0.
[319]
Wu Zhaojie, Fang Jianhua, Liu Na, Wu Jiang, Kong Linglan. The improvement in hydrogen storage performance of MgH2 enabled by multilayer Ti3C2, Micromachines 2021, 12, 1190. https://doi.org/10.3390/mi12101190.
[320]
Isabel Llamas Jansa. Georgios N. Kalantzopoulos, Kari Nordholm, Bjørn C. Hauback. Destabilization of NaBH4 by transition metal fluorides, Molecules 2020, 25, 780. https://doi.org/10.3390/molecules25040780.
[321]
Pang Yuepeng. in situ formation of Al3Ti, MgF2 and Al and their superior synergetic effects on reversible hydrogen storage of MgH2, Catal. Today 2018, 318, 107-112. https://doi.org/10.1016/j.cattod.2017.10.035.
[322]
Christian Bonatto Minella, Garroni Sebastiano, Pistidda Claudio, Dolors Baró Maria, Gutfleisch Oliver, Klassen Thomas, Dornheim Martin. Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2-MgH2 system, Journal of Alloys and Compounds 2015, 622, 989-994. https://doi.org/10.1016/j.jallcom.2014.11.038.
[323]
Zhang Tiebang. Non-isothermal synergetic catalytic effect of TiF3 and Nb2O5 on dehydrogenation high-energy ball milled MgH2, Materials Chemistry and Physics 2016, 183, 65-75. https://doi.org/10.1016/j.matchemphys.2016.08.002.
[324]
Mustafa N.S., Ismail M.. Enhanced hydrogen storage properties of K2TiF6 doped Mg-Na-Al composite system, Materials Chemistry and Physics 2018, 217, 350-356. https://doi.org/10.1016/j.matchemphys.2018.06.060.
[325]
Nurul Nafiqah Itam Sulaiman. Muhammad Syarifuddin Yahya, Noratiqah Sazelee, Nurul Amirah Ali, Nurul Shafikah Mustafa, Muhammad Firdaus Asyraf Abdul Halim Yap, Mohammad Ismail. An investigation on the addition of SrTiO3 to the hydrogen storage properties of the 4MgH2-Li3AlH6 composite, International Journal of Energy Research 2022, 46, 8030-8041. https://doi.org/10.1002/er.7704.
[326]
Mao Jianfeng, Guo Zaiping, Leng Haiyan, Wu Zhu, Guo Yanhui, Yu Xuebin, Liu Huakun. Reversible hydrogen storage in destabilized LiAlH4-MgH2-LiBH4 ternary-hydride system doped with TiF3, Journal of Physical Chemistry C 2010, 114, 11643-11649. https://doi.org/10.1021/jp1012208.
[327]
Ismail M., Yap F.A. Halim, Sulaiman N.N., Ishak M.H.I.. Hydrogen storage properties of a destabilized MgH2Sn system with TiF3 addition, Journal of Alloys and Compounds 2016, 678, 297-303. https://doi.org/10.1016/j.jallcom.2016.03.168.
[328]
Yang Lili, Li Shujing, Chen Jiawen, Liu Jiangchuan, Zhu Yunfeng, Liu Yana, Zhang Jiguang, Qiao Yajing, Ba Zhixin, Li Liquan. Significantly improved hydrogen storage properties of Mg90Al10 catalyzed by TiF3, Journal of Alloys and Compounds 2022, 908, 164581. https://doi.org/10.1016/j.jallcom.2022.164581.
[329]
Mazlan N.S.C., Yap F.A. Halim, Yahya M.S., Mohamed S.B., Sazelee N.A., Ali N.A., Jusoh I., Ismail M.. Influence of TiF3 catalyst on the enhancement of hydrogen storage properties of Mg-Na-Al-Li-B composite system, Journal of Energy Storage 2023, 71, 108097. https://doi.org/10.1016/j.est.2023.108097.
[330]
Hou Xiaojiang, Hu Rui, Yang Yanling, Feng Lei. Isothermal activation, thermodynamic and hysteresis of MgH2 hydrides catalytically modified by high-energy ball milling with MWCNTs and TiF3, International Journal of Hydrogen Energy 2017, 42, 22953-22964. https://doi.org/10.1016/j.ijhydene.2017.07.099.
[331]
Su Wei. Effect of multi-wall carbon nanotubes supported nano-nickel and TiF3 addition on hydrogen storage properties of magnesium hydride, Journal of Alloys and Compounds 2016, 669, 8-18. https://doi.org/10.1016/j.jallcom.2016.01.253.
[332]
Thiangviriya Sophida, Plerdsranoy Praphatsorn, Sitthiwet Chongsutthamani, Dansirima Palmarin, Thongtan Puttimate, Eiamlamai Priew, Utke Oliver, Utke Rapee. MgH2-TiF4-MWCNTs based hydrogen storage tank with central tube heat exchanger, International Journal of Hydrogen Energy 2019, 44, 20173-20182. https://doi.org/10.1016/j.ijhydene.2019.06.002.
[333]
Kong Qianqian, Zhang Huanhuan, Yuan Zhenluo, Liu Jiameng, Li Lixin, Fan Yanping, Fan Guangxin, Liu Baozhong, Hamamelis-like. K2Ti6O13 Synthesized by Alkali Treatment of Ti3C2 MXene: Catalysis for Hydrogen Storage in MgH2, ACS Sustainable Chemistry & Engineering 2020, 8, 4755-4763. https://doi.org/10.1021/acssuschemeng.9b06936.
[334]
Zhang Liuting, Xiao Xuezhang, Chen Lixin, Fan Xiulin, Zheng Jiaguang, Huang Xu. Correction: enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes, Journal of Materials Chemistry A 2017, 5, 24015-24015. https://doi.org/10.1039/C7TA90253K.
[335]
Xian Kaicheng, Wu Meihong, Gao Mingxia, Wang Shun, Li Zhenglong, Gao Panyu, Yao Zhihao, Liu Yongfeng, Sun Wenping, Pan Hongge. A unique nanoflake‐shape bimetallic Ti-Nb oxide of superior catalytic effect for hydrogen storage of MgH2, Small 2022, 2107013. https://doi.org/10.1002/smll.202107013.
[336]
Pukazhselvan D.. Narendar Nasani, Tao Yang, Devaraj Ramasamy, Aliaksandr Shaula, Duncan Paul Fagg. Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2, Applied Surface Science 2019, 472, 99-104. https://doi.org/10.1016/j.apsusc.2018.04.052.
[337]
Wang J.S., Zhang W., Han S.M., Qin F..Improvement in hydrogen storage properties of MgH2 catalyzed with BaTiO3additive, IOP Conference Series: Materials Science and Engineering 2018, 292, 012053.
[338]
Joshua Adedeji Bolarin, Zhang Zhao, Cao Hujun, Li Zhi, He Teng, Chen Ping. Room temperature hydrogen absorption of Mg/MgH2 catalyzed by BaTiO3, Journal of Physical Chemistry C 2021, 125, 19631-19641. https://doi.org/10.1021/acs.jpcc.1c05560.
[339]
Zhang Tengfei. Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate, Journal of Alloys and Compounds 2017, 711, 400-405. https://doi.org/10.1016/j.jallcom.2017.03.361.
[340]
Mao Yuchen, Han Mengjiao, Li Ziming, Huang Liangjun, Zhang Wei, Wang Hui, Ouyang Liuzhang, Ma Xiuliang, Zhu Min. Giant tuning on de/hydrogenation thermodynamics by constructing internal strain field in AB2 type hydrogen storage alloys, Acta Materialia 2025, 301, 121551. https://doi.org/10.1016/j.actamat.2025.121551.
[341]
Song Wenjie, Ma Wenhao, He Shuai, Chen Wei, Shen Jianghua, Sun Dalin, Wei Qiuming, Yu Xuebin. TiO2@C catalyzed hydrogen storage performance of Mg-Ni-Y alloy with LPSO and ternary eutectic structure, Journal of Magnesium and Alloys 2024, 12, 767-778. https://doi.org/10.1016/j.jma.2023.04.002.
[342]
Zhang Jiyue, Wang Wenda, Chen Xiaowei, Jin Jinlong, Yan Xiaojun, Huang Jianmei. Single-atom Ni supported on TiO2 for catalyzing hydrogen storage in MgH2, Journal of the American Chemical Society 2024, 146, 10432-10442. https://doi.org/10.1021/jacs.3c13970.
[343]
Jia Bohua, Zhang Jingjing, Chen Xiaowei, Zhang Jiyue, Han Baoxin, Wang Wentao, Yan Xiaojun, Shui Jianglan, Huang Jianmei. Electronic structure modulation of Nb2O5 by Ru single atoms enabling efficient hydrogen storage of magnesium hydrides, Angewandte Chemie International Edition 2025, 64, e202511139. https://doi.org/10.1002/anie.202511139.
[344]
Li Yinghui, Ren Li, Yao Yingying, Zhao Yingyan, Xu Hao, Li Zhao, Li Zi, Dai Xiaohan, Tian Yuhan, Cao Shusheng, Lin Xi, Ye Chongnan, Züttel Andreas, Zou Jianxin. A single-atom interface engineering strategy to promote hydrogen sorption performances of magnesium hydride, Advanced Functional Materials 2025, 35, 2417915. https://doi.org/10.1002/adfm.202417915.
[345]
Liu Yafei, Yue Mengyuan, Guo Yusang, Jiang Yaru, Sun Yu, Feng Lizhuang, Wang Yijing. Catalytic effect of carbon-supported NiCoFeCuMg high-entropy alloy nanocatalysts on hydrogen storage properties of MgH2, Journal of Magnesium and Alloys 2025, 13, 1232-1242. https://doi.org/10.1016/j.jma.2024.04.031.
[346]
Zhong Tao, Zhang Haoyu, Song Mengchen, Jiang Yiqun, Shang Danhong, Wu Fuying, Zhang Liuting. FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, International Journal of Minerals, Metallurgy, and Materials 2023, 30, 2270-2279. https://doi.org/10.1007/s12613-023-2669-7.
[347]
Jia Manman, Jiang Jietao, Tian Jingyi, Wang Xizhang, Yang Lijun, Wu Qiang, Hu Zheng. Ultrasmall high-entropy alloy nanoparticles on hierarchical N-doped carbon nanocages for tremendous electrocatalytic hydrogen evolution, Nano Research 2024, 17, 9518-9524. https://doi.org/10.1007/s12274-024-6924-7.
[348]
Li Yinghui, Zhao Yingyan, Cao Shusheng, Li Zi, Shen Yueqing, Kuddusi Yasemen, Lu Chong, Lin Xi, Züttel Andreas, Ye Chongnan, Zou Jianxin. Study on mechanisms of two-step hydrogen sorption in a MgH2-TiCrMnFeZr high-entropy alloy composite, Journal of Materials Chemistry A 2025, 13, 23632-23642. https://doi.org/10.1039/D5TA03497C.
[349]
Yao Yonggang, Dong Qi, Brozena Alexandra, Luo Jian, Miao Jianwei, Chi Miaofang, Wang Chao, G Ioannis, Kevrekidis, Ren Zhiyong Jason, Greeley Jeffrey, Wang Guofeng, Anapolsky Abraham, Hu Liangbing. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery, Science 2022, 376, eabn3103. https://doi.org/10.1126/science.abn3103.
[350]
Lu Furong, Feng Guang, Qi Huimin, Li Qichang, Su Lina, Kang Zhongyang, Hou Yuying, Huang Zhiqi, Xia Dingguo. Structurally ordered high-entropy intermetallics for electrocatalysis, Advanced Energy Materials 2025, e03306. https://doi.org/10.1002/aenm.202503306.
[351]
Li Fangyi, Zhu Guihua, Jiang Jizhou, Yang Lang, Deng Fengxia, Arramel, Li Xin. A review of updated S-scheme heterojunction photocatalysts, Journal of Materials Science and Technology 2024, 177, 142-180. https://doi.org/10.1016/j.jmst.2023.08.038
[352]
Shao Longfei, Lin Xi, Yang Xue, Zhao Yingyan, Zhang Jiaqi, Cheng Tao, Zou Jianxin. Magnesium-based hydrogen storage tanks: a review of research, development and simulation models, Renewable and Sustainable Energy Reviews 2025, 211, 115332. https://doi.org/10.1016/j.rser.2025.115332.

Footnotes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (22409052, 22409112, U22A20120, 52071135, 51871090 and U1804135), Henan Province Postdoctoral Research Projects (No. HN2025009), and High-level talent project of Henan University of Technology (No. 2023BS049). We thanked Sehrish Mehdi from The Women University Multan for the work in terms of language checking.

RIGHTS & PERMISSIONS

© 2025 This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(4474 KB)

Accesses

Citation

Detail

Sections
Recommended

/