Hollow-structured materials for advanced energy storage and conversion: rational synthesis, multifunctional applications, and mechanism insights

Yiran Sun, Changqu Liu, Shuqi Ji, Jinbo Ni, Xiangning Wu, Sembukuttiarachilage Ravi Pradip Silva, Meng Cai, Guosheng Shao, Peng Zhang

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250202.

PDF(5966 KB)
PDF(5966 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250202. DOI: 10.63823/20250202
Original article

Hollow-structured materials for advanced energy storage and conversion: rational synthesis, multifunctional applications, and mechanism insights

Author information +
History +

Abstract

Hollow-structured materials exhibit breakthrough potential in energy storage and conversion, leveraging unique advantages including high specific surface area, controllable cavity architecture, and short-range mass transfer pathways, alongside tunable functional properties. This review synthesizes recent progress, emphasizing the constitutive relationships governing material synthesis, structural engineering, and resultant performance. Key synthesis strategies including encompassing hard-templating, soft-templating, and template-free approaches are delineated with respect to their mechanisms and characteristics. Subsequently, cutting-edge applications in energy storage systems (e.g., lithium-ion batteries, supercapacitors), conversion systems (e.g., photoelectrocatalysis) and the application of partial in-situ testing technology for exploring the reaction mechanism are highlighted. The review concludes by outlining critical challenges and opportunities pertaining to scalable fabrication, structural stability, and device integration, providing a roadmap for the precise design and performance optimization of these materials.

Key words

Hollow structure / Template synthesis / Energy storage / Energy conversion / In situ testing techniques

Cite this article

Download Citations
Yiran Sun , Changqu Liu , Shuqi Ji , et al . Hollow-structured materials for advanced energy storage and conversion: rational synthesis, multifunctional applications, and mechanism insights[J]. Composite Functional Materials. 2025, 1(2): 20250202 https://doi.org/10.63823/20250202

References

[1]
Li Fangyi, Zhu Guihua, Jiang Jizhou, Yang Lang, Deng Fengxia, Arramel, Li Xin. A review of updated S-scheme heterojunction photocatalysts, Journal of Materials Science & Technology, 177 ( 2024) 142-180. https://doi.org/10.1016/j.jmst.2023.08.038.
[2]
Zhu Ke, Li Xin, Chen Yuwen, Huang Yizhe, Yang Zhiyu, Guan Guoqing, Yan Kai. Recent advances on the spherical metal oxides for sustainable degradation of antibiotics, Coordination Chemistry Reviews, 510 ( 2024) 215813. https://doi.org/10.1016/j.ccr.2024.215813.
[3]
Deng Fengxia, Jiang Jizhou, Sirés Ignasi. State-of-the-art review and bibliometric analysis on electro-Fenton process, Carbon Letters, 33 ( 2023) 17-34. http://doi.org/10.1007/s42823-022-00420-z.
[4]
Li Neng, Yang Yufei, Shi Zuhao, Lan Zhigao, Arramel Arramel, Zhang Peng, Ong Wee-Jun, Jiang Jizhou, Lu Jianfeng. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites, iScience, 25 ( 2022). http://doi.org/10.1016/j.isci.2022.103753.
[5]
Zhou Hanghang, Ye Wenqiang, Jiang Jizhou, Wang Zheng. Recent advances on surface modification of non-oxide photocatalysts towards efficient CO2 conversion, Carbon Letters, 34 ( 2024) 1569-1591. http://doi.org/10.1007/s42823-024-00748-8.
[6]
Jiang Jizhou, Li Fangyi, Zou Jing, Liu Song, Wang Jiamei, Zou Yilun, Xiang Kun, Zhang Han, Zhu Guoyin, Zhang Yizhou, Fu Xianzhu, Hsu Jyh-Ping. Three-dimensional MXenes heterostructures and their applications, Science China Materials, 65 ( 2022) 2895-2910. http://doi.org/10.1007/s40843-022-2186-0.
[7]
Li Fangyi, Jiang Jizhou, Wang Jiamei, Zou Jing, Sun Wei, Wang Haitao, Xiang Kun, Wu Pingxiu, Hsu Jyh-Ping. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production, Nano Research, 16 ( 2023) 127-145. http://doi.org/10.1007/s12274-022-4799-z.
[8]
Jiang Jizhou, Li Fangyi, Ding Lei, Zhang Chengxun, Arramel, Li Xin. MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications, Nano Research, 17 ( 2024) 3429-3454. http://doi.org/10.1007/s12274-023-6302-x.
[9]
Jiang Jizhou, Li Neng, Zou Jing, Zhou Xing, Eda Goki, Zhang Qingfu, Zhang Hua, Li Lain-Jong,Zhai Tianyou, T. S. Wee Andrew. Synergistic additive-mediated CVD growth and chemical modification of 2D materials, Chemical Society Reviews, 48 ( 2019) 4639-4654. http://doi.org/10.1039/C9CS00348G.
[10]
Wang Jiangyan, Cui Yi, Wang Dan. Design of hollow nanostructures for energy storage, conversion and production, Advanced Materials, 31 ( 2019) 1801993. https://doi.org/10.1002/adma.201801993.
[11]
Zhou Liang, Zhuang Zechao, Zhao Huihui, Lin Mengting, Zhao Dongyuan, Mai Liqiang. Intricate Hollow structures: Controlled synthesis and applications in energy storage and conversion, Advanced Materials, 29 ( 2017) 1602914. https://doi.org/10.1002/adma.201602914.
[12]
Cheng Hui, G Joseph, Shapter, Li Yongying, Gao Guo. Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy Chemistry, 57 ( 2021) 451-468. https://doi.org/10.1016/j.jechem.2020.08.056.
[13]
Liu Yanan, Wei Zengyan, Zhong Bo, Wang Huatao, Xia Long, Zhang Tao, Duan Xiaoming, Jia Dechang, Zhou Yu, Huang, O- Xiaoxiao. N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries, Energy Storage Materials, 35 ( 2021) 12-18. https://doi.org/10.1016/j.ensm.2020.11.011.
[14]
Wang Yinglin, Ma Chao, Wang Chen, Cheng Pengfei, Xu Luping, Lv Li, Zhang Hua. Design of SnO2@Air@TiO2 hierarchical urchin-like double-hollow nanospheres for high performance dye-sensitized solar cells, Solar Energy, 189 ( 2019) 412-420. https://doi.org/10.1016/j.solener.2019.07.082.
[15]
F. Aldosari Obaid, Hussain Ijaz. Unlocking the potential of TiO2-based photocatalysts for green hydrogen energy through water-splitting: Recent advances, future perspectives and techno feasibility assessment, International Journal of Hydrogen Energy, 59 ( 2024) 958-981. https://doi.org/10.1016/j.ijhydene.2024.01.306.
[16]
Wang Jiaming, Huang Ying, Du Xianping, Zhang Shuai, Zong Meng. Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors, Chemical Engineering Journal, 464 ( 2023) 142741. https://doi.org/10.1016/j.cej.2023.142741.
[17]
Liu Nian, Lu Zhenda, Zhao Jie, T Matthew, McDowell, Lee Hyun-Wook, Zhao Wenting, Cui Yi. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nature Nanotechnology, 9 ( 2014) 187-192. http://doi.org/10.1038/nnano.2014.6.
[18]
Zhao Jian, Li Zhenyu, Wang Jinfeng, Li Quanxiang, Wang Xungai. Capsular polypyrrole hollow nanofibers: an efficient recyclable adsorbent for hexavalent chromium removal, Journal of Materials Chemistry A, 3 ( 2015) 15124-15132. http://doi.org/10.1039/C5TA02525G.
[19]
Liu Jun, Liu Wei,Ji Shaomin, Wan Yanling, Gu Mingzhe, Yin Huaqi, Zhou Yichun. Iron Fluoride Hollow porous microspheres: Facile solution-phase synthesis and their application for Li-ion battery cathodes, Chemistry - A European Journal, 20 ( 2014) 5815-5820. https://doi.org/10.1002/chem.201304713.
[20]
Xu Xiaobin, Nosheen Farhat, Wang Xun. Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal-organic framework for electrocatalytic hydrogen evolution reaction, Chemistry of Materials, 28 ( 2016) 6313-6320. http://doi.org/10.1021/acs.chemmater.6b02586.
[21]
Li Zhao, Song Ming, Zhu Wenyou, Zhuang Wenchang, Du Xihua, Tian Lin. MOF-derived hollow heterostructures for advanced electrocatalysis, Coordination Chemistry Reviews, 439 ( 2021) 213946. https://doi.org/10.1016/j.ccr.2021.213946.
[22]
Zhang Xu, Lu Wang, Tian Yuhan, Yang Shixuan, Zhang Qiang, Lei Da,Zhao Yingyuan. Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors, Journal of Colloid and Interface Science, 606 ( 2022) 1120-1127. https://doi.org/10.1016/j.jcis.2021.08.094.
[23]
Zhang Erhuan, Zhu Qianhong, Huang Junheng, Liu Jia, Tan Guoqiang, Sun Chengjun, Li Tao, Liu Shan, Li Yuemei, Wang Hongzhi, Wan Xiaodong, Wen Zhenhai, Fan Fengtao, Zhang Jiatao, Ariga Katsuhiko. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water, Applied Catalysis B: Environmental, 293 ( 2021) 120213. https://doi.org/10.1016/j.apcatb.2021.120213.
[24]
Wei Chenhao, He Mukun, Li Maoqing, Ma Xiao, Dang Wenlong, Liu Panbo, Gu Junwei. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption, Materials Today Physics, 36 ( 2023) 101142. https://doi.org/10.1016/j.mtphys.2023.101142.
[25]
Zhao Yongpeng, Zuo Xueqing, Guo Yuan, Huang Hui, Zhang Hao, Wang Ting, Wen Ningxuan, Chen Huan, Cong Tianze, Muhammad Javid, Yang Xuan, Wang Xinnan, Fan Zeng, Pan Lujun.. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption, Nano-Micro Letters, 13 ( 2021) 144. http://doi.org/10.1007/s40820-021-00667-7.
[26]
Luo Li, Huang Rui, Hu Wei, Yu Zhaoshi, Tang Zhixin, Chen Leqi, Zhang Yunhuai, Zhang Dan, Xiao Peng. Metal-organic framework-derived hollow CoMn2O4 nanocube catalysts for deep toluene oxidation, ACS Applied Nano Materials, 5 ( 2022) 8232-8242. http://doi.org/10.1021/acsanm.2c01329.
[27]
Sun Bojing, Zhou Wei, Li Haoze, Ren Liping, Qiao Panzhe, Xiao Fang, Wang Lei, Jiang Baojiang, Fu Honggang. Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation, Applied Catalysis B: Environmental, 221 ( 2018) 235-242. https://doi.org/10.1016/j.apcatb.2017.09.023.
[28]
Fu Yuanlin, Li Yunlong, Fan Fuqiang, Chen Bingbing, Hou Xiaojiao, Li Yuhang, Li Hui, Fu Yu, Qi Wei. . Atomic-level dispersed Cu in NiFe-LDH hollow nanocages for highly efficient electrochemical nitrate reduction reaction. , ACS Catalysis, 15 ( 2025) 6918-6928. http://doi.org/10.1021/acscatal.4c07320.
[29]
Guan Xiaohui, Zhang Jiqing, Zhu Enze, Li Ruotong, Yang Liu, Liu Bao, Zhang Haifeng, Yin Penggang,Wang Guangsheng. . Electron distribution regulation of nanoparticle assembled hollow structured Fe3O4@ZnFe2O4@NC/Mo2TiC2Tx for high-performance aqueous zinc-ion batteries,Advanced Functional Materials, 35 ( 2025) 2418960. https://doi.org/10.1002/adfm.202418960.
[30]
Chai Lulu, Wang Xian, Hu Yue, Li Xifei, Huang Shaoming, Pan Junqing, Qian Jinjie, Sun Xueliang. In-MOF-derived hierarchically hollow carbon nanostraws for advanced zinc-iodine batteries, Advanced Science, 9 ( 2022) 2105063. https://doi.org/10.1002/advs.202105063.
[31]
Gao Yijun, Song Shanshan, He Fei, Kong Xianglong, Xiao Zhong, Cui Xianchang, Cao Linbo, Zhang Yumeng, Liu Zhiliang, Yang Piaoping. Controllable synthesis of hollow dodecahedral Si@C core-shell structures for ultrastable lithium-ion batteries, Small, 20 ( 2024) 2406489. https://doi.org/10.1002/smll.202406489.
[32]
Wang Fengbo, Wang Lu, Wang Bin, Jing Zhongxin, Ding Dong, Yang Xiaofan, Kong Yueyue, Dou Jianmin, Mamoor Muhammad, Xu Liqiang. Cognate cobalt core-shell structure decorated nitrogen-doped hollow carbon bowls triggering advanced zinc-air battery, Advanced Functional Materials, 35 ( 2025) 2415326. https://doi.org/10.1002/adfm.202415326.
[33]
Yang Yuan, Qiu Jianwei, Dai Linna, Hu Zhibiao, Lin Xiaohang, Hua Minghao, Si Pengchao. Zn-assisted low-temperature reconstruction of NiCo heterogeneous catalysts for lithium-oxygen batteries, Chemical Engineering Journal, 487 ( 2024) 150718. https://doi.org/10.1016/j.cej.2024.150718.
[34]
Pi Yecan, Lin Hao, Meng Zhenyang, Qiu Ziming, Su Yichun, Hang Xinxin, Pang Huan. Self-template synthesis of PBA/MOF hollow nanocubes for aqueous battery, Chemical Engineering Journal, 499 ( 2024) 155618. https://doi.org/10.1016/j.cej.2024.155618.
[35]
Li Haitao, Liu Jianchuan, Wang Yujie, Guo Chunsheng, Pi Yutong, Fang Qianrong, Liu Jian.Hollow covalent organic framework (COF) nanoreactors for sustainable photo/electrochemical catalysis, Coordination Chemistry Reviews, 523 ( 2025) 216240. https://doi.org/10.1016/j.ccr.2024.216240.
[36]
Xiao Yawei, Li Haoyu, Yao Bo, Xiao Kai, Wang Yude. Hollow g-C3N4@Ag3PO4core-shell nanoreactor loaded with Au nanoparticles: Boosting photothermal catalysis in confined space, Small, 20 ( 2024) 2308032. https://doi.org/10.1002/smll.202308032.
[37]
Tian Zhidong, Liang Yiqi, Chen Kai, Gao Jiyuan, Lu Zhiwen, Hu Xiang, Ding Yichun, Wen Zhenhai.Advanced hollow cubic FeCo-N-C cathode electrocatalyst for ultrahigh-power aluminum-air battery, Small, 20 ( 2024) 2310694. https://doi.org/10.1002/smll.202310694.
[38]
Ma Hongwei, Yu Zhisheng, Li Haocheng, Guo Daying, Zhou Zheyang, Jin Huile, Wu Lianhui, Chen Xi'an, Wang Shun. Tandem carbon hollow spheres with tailored inner structure as sulfur immobilization for superior lithium-sulfur batteries, Advanced Functional Materials, 34 ( 2024) 2310301. https://doi.org/10.1002/adfm.202310301.
[39]
Tian Yun, Wei Zhengyu, Li Fan,Li Songjie, Shao Lixiang, He Mengyuan, Sun Panfei, Li Yuanyuan. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries, Journal of Materials Science & Technology, 100 ( 2022) 216-223. https://doi.org/10.1016/j.jmst.2021.06.002.
[40]
Yan Zichao, Liang Yaru, Hua Weibo, Zhang Xia-Guang, Lai Weihong, Hu Zhe, Wang Wanlin, Peng Jian, Indris Sylvio, Wang Yunxiao, Chou Shu-Lei, Liu Huakun, Dou Shi-Xue. Multiregion janus-featured cobalt phosphide-cobalt composite for highly reversible room-temperature sodium-sulfur batteries, ACS Nano, 14 ( 2020) 10284-10293. http://doi.org/10.1021/acsnano.0c03737.
[41]
Liang Zhenyan, Yang Mingzhi, Wang Shouzhi, Chang Bin, Tu Huayao, Shao Yongliang, Zhang Baoguo, Zhao Huaping, Lei Yong, Shen Jianxing, Wu Yongzhong, Hao Xiaopeng. Hollow submicrospheres of trimetallic selenides for high-capacity lithium and sodium ion batteries, Chemical Engineering Journal, 405 ( 2021) 126724. https://doi.org/10.1016/j.cej.2020.126724.
[42]
Xie Fangxi, Zhang Lei, Gu Qinfen, Chao Dongliang, Jaroniec Mietek, Qiao Shi-Zhang. Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density, Nano Energy, 60 ( 2019) 591-599. https://doi.org/10.1016/j.nanoen.2019.04.008.
[43]
Yang Li-Ping, Lin Xi-Jie, Zhang Xing, Zhang Wei, Cao An-Min, Wan Li-Jun. General synthetic strategy for hollow hybrid microspheres through a progressive inward crystallization process, Journal of the American Chemical Society, 138 ( 2016) 5916-5922. http://doi.org/10.1021/jacs.6b00773.
[44]
Zheng Dandan, Cao Xu-Ning, Wang Xinchen. Precise Formation of a Hollow Carbon Nitride Structure with a Janus Surface To Promote Water Splitting by Photoredox Catalysis, Angewandte Chemie International Edition, 55( 2016) 11512-11516. https://doi.org/10.1002/anie.201606102.
[45]
Wang Yawen, Yu Le, Lou Xiong Wen. Formation of triple-shelled molybdenum-polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries, Angewandte Chemie International Edition, 55 ( 2016) 14668-14672. https://doi.org/10.1002/anie.201608410.
[46]
Ma Zhongyuan, Rui Kun, Zhang Qiao, Zhang Yao, Du Min, Li Desheng, Wang Qingqing, Huang Xiao, Zhu Jixin, Huang Wei. Self-templated formation of uniform F-CuO hollow octahedra for lithium ion batteries, Small, 13 ( 2017) 1603500. https://doi.org/10.1002/smll.201603500.
[47]
Dong Yue, Jia Baoquan, Fu Feiya, Zhang Heyou, Zhang Lina, Zhou Jinping. Fabrication of hollow materials by fast pyrolysis of cellulose composite fibers with heterogeneous structures, Angewandte Chemie International Edition, 55 ( 2016) 13504-13508. https://doi.org/10.1002/anie.201607455.
[48]
Yu Le, Hu Han, Wu Hao Bin,Lou Xiong Wen. Complex hollow nanostructures: Synthesis and energy-related applications, Advanced Materials, 29 ( 2017) 1604563. https://doi.org/10.1002/adma.201604563.
[49]
Qi Jian, Lai Xiaoyong, Wang Jiangyan, Tang Hongjie, Ren Hao, Yang Yu, Jin Quan, Zhang Lijuan, Yu Ranbo, Ma Guanghui, Su Zhiguo, Zhao Huijun, Wang Dan. Multi-shelled hollow micro-/nanostructures, Chemical Society Reviews, 44 ( 2015) 6749-6773. http://doi.org/10.1039/C5CS00344J.
[50]
Wang Jiangyan, Tang Hongjie, Wang Huan, Yu Ranbo, Wang Dan. Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries, Materials Chemistry Frontiers, 1 ( 2017) 414-430. http://doi.org/10.1039/C6QM00273K.
[51]
Wang Jiangyan, Tang Hongjie, Ren Hao, Yu Ranbo, Qi Jian, Mao Dan, Zhao Huijun, Wang Dan. pH-Regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates, Advanced Science, 1 ( 2014) 1400011. https://doi.org/10.1002/advs.201400011.
[52]
Guo Yuchen, Sun Jiaming, Tang Yuan, Jia Xiaofang, Nie Yu, Geng Zikang, Wang Chunyang, Zhang Junying, Tan Xin, Zhong Dichang, Ye Jinhua, Yu Tao. Efficient interfacial electron transfer induced by hollow-structured ZnIn2S4 for extending hot electron lifetimes, Energy & Environmental Science, 16 ( 2023) 3462-3473. http://doi.org/10.1039/D3EE01522J.
[53]
Zhang Dingyue, Huang Gang, Zhang Hao, Zhang Ziqiang, Liu Yong, Gao Fan, Shang Zhoutai, Gao Caiqin, Zhou Yuhan, Fu Shihui, Wei Jingjiang, Terrones Mauricio, Wang Yanqing. Soft template-induced self-assembly strategy for sustainable production of porous carbon spheres as anode towards advanced sodium-ion batteries, Chemical Engineering Journal, 495 ( 2024) 153646. https://doi.org/10.1016/j.cej.2024.153646.
[54]
Gao Hui,Zhang Xixi, Sun Gang, Li Chuanlin, Xu Xijin, Zhao Xian. Constructing hollowly bimetallic selenides as cathode for aqueous zinc battery with outstanding rate performance, Chemical Engineering Journal, 455 ( 2023) 140680. https://doi.org/10.1016/j.cej.2022.140680.
[55]
Zhao Hao, Liu Guanhua, Liu Yunting, Zhou Liya, Ma Li,He Ying, Zheng Xiaobing, Gao Jing, Jiang Yanjun. Preparation of hollow spherical covalent organic frameworks via Oswald ripening under ambient conditions for immobilizing enzymes with improved catalytic performance, Nano Research, 16 ( 2023) 281-289. http://doi.org/10.1007/s12274-022-4769-5.
[56]
Xu Chunyang, Li Qinghao, Shen Junling, Yuan Ze, Ning Jiqiang, Zhong Yijun, Zhang Ziyang, Hu Yong. A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction, Nanoscale, 11 ( 2019) 10738-10745. http://doi.org/10.1039/C9NR02599E.
[57]
Zhu Youcai, Li Caiting, Liang Caixia, Li Shanhong, Liu Xuan, Du Xueyu, Yang Kuang, Zhao Jungang, Yu Qi, Zhai Yunbo, Ma Ying. Regulating CeO2 morphologies on the catalytic oxidation of toluene at lower temperature: A study of the structure-activity relationship, Journal of Catalysis, 418 ( 2023) 151-162. https://doi.org/10.1016/j.jcat.2023.01.012.
[58]
Caruso Frank, A Rachel, Caruso, Möhwald Helmuth. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282 ( 1998) 1111-1114. http://doi.org/10.1126/science.282.5391.1111.
[59]
Li Yuzhang, Yan Kai, Lee Hyun-Wook, Lu Zhenda, Liu Nian, Cui Yi. Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes, Nature Energy, 1 ( 2016) 16017. http://doi.org/10.1038/nenergy.2016.17.
[60]
Wu Hui, Zheng Guangyuan, Liu Nian, J Thomas, Carney, Yang Yuan, Cui Yi. Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Letters, 12 ( 2012) 904-909. http://doi.org/10.1021/nl203967r.
[61]
Zhao Meng-Qiang,Xie Xiuqiang, E. Ren Chang, Makaryan Taron, Anasori Babak, Wang Guoxiu, Gogotsi Yury. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage, Advanced Materials, 29 ( 2017) 1702410. https://doi.org/10.1002/adma.201702410.
[62]
Hye Hwang Sun, Yun Juyoung, Jang Jyongsik. Multi-shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells, Advanced Functional Materials, 24 ( 2014) 7619-7626. https://doi.org/10.1002/adfm.201401915.
[63]
Tong Zhenwei, Yang Dong, Li Zhen, Nan Yanhu, Ding Fei, Shen Yichun, Jiang Zhongyi. Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis, ACS Nano, 11 ( 2017) 1103-1112. http://doi.org/10.1021/acsnano.6b08251.
[64]
Ding Yin, Hu Yong, Jiang Xiqun, Zhang Leyang, Yang Changzheng. Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres, Angewandte Chemie International Edition, 43 ( 2004) 6369-6372. https://doi.org/10.1002/anie.200460408.
[65]
Gu Dong, Bongard Hans, Deng Yonghui, Feng Dan, Wu Zhangxiong, Fang Yin, Mao Jianjiang, Tu Bo, Schüth Ferdi, Zhao Dongyuan. An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites, Advanced Materials, 22 ( 2010) 833-837. https://doi.org/10.1002/adma.200902550.
[66]
Kim Seong Su, Zhang Wenzhong. Thomas J. Pinnavaia, Ultrastable mesostructured silica vesicles, Science, 282 ( 1998) 1302-1305. http://doi.org/10.1126/science.282.5392.1302.
[67]
Li Yongjun, Li Xiaofang, Li Yuliang, Liu Huibiao, Wang Shu, Gan Haiyang, Li Junbo, Wang Ning, He Xiaorong, Zhu Daoben. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex:From multibilayer vesicles to hollow capsules, Angewandte Chemie International Edition, 45 ( 2006) 3639-3643. https://doi.org/10.1002/anie.200600554.
[68]
Liu Jian.Sandy Budi Hartono, Yong Gang Jin, Zhen Li, Gao Qing Lu, Shi Zhang Qiao, A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres, Journal of Materials Chemistry, 20 ( 2010) 4595-4601. http://doi.org/10.1039/B925201K.
[69]
Wang Guang-Hui, Hilgert Jakob. Felix Herrmann Richter, Feng Wang, Hans-Josef Bongard, Bernd Spliethoff, Claudia Weidenthaler, Ferdi Schüth, Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural, Nature Materials, 13 ( 2014) 293-300. http://doi.org/10.1038/nmat3872.
[70]
Wu Zhengcui, Zhang Miao, Yu Kuai, Zhang Shudong, Xie Yi. Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture, Chemistry - A European Journal, 14 ( 2008) 5346-5352. https://doi.org/10.1002/chem.200701945.
[71]
Zhang Yang, Yu Meihua, Zhou Liang, Zhou Xufeng, Zhao Qingfei, Li Hexing, Yu Chengzhong. Organosilica multilamellar vesicles with tunable number of layers and sponge-like walls via one surfactant templating, Chemistry of Materials, 20 ( 2008) 6238-6243. http://doi.org/10.1021/cm8011815.
[72]
Thakur Anupma.Nithin Chandran B. S, Karis Davidson, Annabelle Bedford, Hui Fang, Yooran Im, Vaishnavi Kanduri, Brian C. Wyatt, Srinivasa Kartik Nemani, Valeriia Poliukhova, Ravi Kumar, Zahra Fakhraai, Babak Anasori. Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene, Small Methods, 7 ( 2023) 2300030. https://doi.org/10.1002/smtd.202300030.
[73]
Yu Le, Wu Hao Bin,Lou Xiong Wen David. Self-templated formation of hollow structures for electrochemical energy applications, Accounts of Chemical Research, 50 ( 2017) 293-301. http://doi.org/10.1021/acs.accounts.6b00480.
[74]
Liang Sun,Ziyu Zhang, Han Jiang, Xiaoyan Deng. Facile synthesis of magnetic mesoporous silica spheres for efficient removal of methylene blue via catalytic persulfate activation, Separation and Purification Technology, 256 ( 2021) 117801. https://doi.org/10.1016/j.seppur.2020.117801.
[75]
Wang Hao, Gao Qiang, Li Haitao, Wang Guanshuai, Han Bo,Xia Kaisheng, Zhou Chenggang. Hydrous titania nanosheets constructed hierarchical hollow microspheres as a highly efficient dual-use decontaminant for elimination of heavy metal ions and organic pollutants, Chemical Engineering Journal, 381 ( 2020) 122638. https://doi.org/10.1016/j.cej.2019.122638.
[76]
Cheng Yan, Ma Yongzhen, Dang Zhener, Hu Renrui, Liu Chenjiao, Chen Mi, Gao Lei,Lin Ying, Wang Tong, Chen Guanjun, Yang Haibo. The efficient absorption of electromagnetic waves by tunable N-doped multi-cavity mesoporous carbon microspheres, Carbon, 201 ( 2023) 1115-1125. https://doi.org/10.1016/j.carbon.2022.10.020.
[77]
Ma Hongchao, Zhao Fanyue, Li Ming, Wang Pengyuan, Fu Yinghuan, Wang Guowen, Liu Xinghui. Construction of hollow binary oxide heterostructures by Ostwald ripening for superior photoelectrochemical removal of reactive brilliant blue KNR dye, Advanced Powder Materials, 2 ( 2023) 100117. https://doi.org/10.1016/j.apmate.2023.100117.
[78]
Chu Yanting, Guo Lingyu, Xi Baojuan, Feng Zhenyu, Wu Fangfang, Lin Yue, Liu Jincheng, Sun Di, Feng Jinkui, Qian Yitai, Xiong Shenglin. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage, Advanced Materials, 30 ( 2018) 1704244. https://doi.org/10.1002/adma.201704244.
[79]
Guo Ruyue, Bao Yan, Kang Qiaoling, Liu Chao, Zhang Wenbo, Zhu Qian. Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633 ( 2022) 127931. https://doi.org/10.1016/j.colsurfa.2021.127931.
[80]
Weng Wangsuo, Lin Jun, Du Yichen, Ge Xufang, Zhou Xiaosi, Bao Jianchun. Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries, Journal of Materials Chemistry A, 6 ( 2018) 10168-10175. http://doi.org/10.1039/C8TA03161D.
[81]
Ma Tiantian, Zheng Lingli, Zhao Yingqiang, Xu Yongshan, Zhang Jun, Liu Xianghong. Highly Porous Double-shelled hollow hematite nanoparticles for gas sensing, ACS Applied Nano Materials, 2 ( 2019) 2347-2357. http://doi.org/10.1021/acsanm.9b00228.
[82]
Han Chunhua, Liu Fang, Liu Jinshuai, Li Qi, Meng Jiashen, Shao Bowen, He Qiu, Wang Xuanpeng, Liu Ziang, Mai Liqiang. Facile template-free synthesis of uniform carbon-confined V2O3 hollow spheres for stable and fast lithium storage, Journal of Materials Chemistry A, 6 ( 2018) 6220-6224. http://doi.org/10.1039/C8TA01695J.
[83]
Xu Hou-Ming, Gu Chao, Wang Gang, Nan Pengfei, Zhang Jian-Ding, Shi Lei, Han Shi-Kui, Ge Binghui, Wang Yang-Gang, Li Jun, Yu Shu-Hong. Kirkendall effect-driven reversible chemical transformation for reconfigurable nanocrystals, Journal of the American Chemical Society, 146 ( 2024) 30372-30379. http://doi.org/10.1021/jacs.4c10252.
[84]
Chu Shasha, Yang Chao, Su Xintai. Synthesis of NiO hollow nanospheres via Kirkendall effect and their enhanced gas sensing performance, Applied Surface Science, 492 ( 2019) 82-88. https://doi.org/10.1016/j.apsusc.2019.06.226.
[85]
Wu Guoqing, Liang Xiaoyu, Zhang Lijuan, Tang Zhiyong, Al-Mamun Mohammad, Zhao Huijun, Su Xintai. Fabrication of highly stable metal oxide hollow nanospheres and their catalytic activity toward 4-nitrophenol reduction, ACS Applied Materials & Interfaces, 9 ( 2017) 18207-18214. http://doi.org/10.1021/acsami.7b03120.
[86]
Luo XiaShuang, Fu CeHuang, Shen ShuiYun, Luo LiuXuan, Zhang JunLiang. Free-templated synthesis of N-doped PtCu porous hollow nanospheres for efficient ethanol oxidation and oxygen reduction reactions, Applied Catalysis B: Environmental, 330 ( 2023) 122602. https://doi.org/10.1016/j.apcatb.2023.122602.
[87]
Ni Chenghao, Hao Chen, Tan Jizheng, Cai Xing, Ling Guoyan, Wu Qianqian, Wu Jingbo, Wang Xiaohong. Fabrication of Co1. 5Ni1. 5S4 and Prussian blue analogues composites with yolk-shell heterostructures as cathode and biomass derived carbon as anode for asymmetric supercapacitors, Journal of Cleaner Production, 466 ( 2024) 142844. https://doi.org/10.1016/j.jclepro.2024.142844.
[88]
Li Qin, Li Yanli, Zhao Jing, Zhao Shihang, Zhou Jiaojiao, Chen Chen, Tao Kai, Liu Rui, Han Lei. Ultrathin nanosheet-assembled hollow microplate CoMoO4 array derived from metal-organic framework for supercapacitor with ultrahigh areal capacitance, Journal of Power Sources, 430 ( 2019) 51-59. https://doi.org/10.1016/j.jpowsour.2019.05.011.
[89]
Yuan Guan Bu, Yu Le, Wang Xiao, Song Shuyan, Lou Xiong Wen. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors, Advanced Materials, 29 ( 2017) 1605051. https://doi.org/10.1002/adma.201605051.
[90]
Michelle D. Regulacio, Wang Yong, Seh Zhi Wei, Han Ming-Yong. Tailoring porosity in copper-based multinary sulfide nanostructures for energy, Biomedical, Catalytic, and Sensing Applications, ACS Applied Nano Materials, 1 ( 2018) 3042-3062. http://doi.org/10.1021/acsanm.8b00639.
[91]
Wang Xiaojing, Feng Ji, Bai Yaocai, Zhang Qiao, Yin Yadong, Synthesis. properties, and applications of hollow micro-/nanostructures, Chemical Reviews, 116 ( 2016) 10983-11060. http://doi.org/10.1021/acs.chemrev.5b00731.
[92]
T. Lawal Abdulazeez, review A, Biosensors. Graphene-based nano composites and their applications. Bioelectronics, 141 ( 2019) 111384. https://doi.org/10.1016/j.bios.2019.111384.
[93]
Wang Mengyi, Yu Xing, Hou Long, Gagnoud Annie, Fautrelle Yves, Moreau Rene, Li Xi. 3D sandwich-shaped graphene-based nanocomposite intercalated with double-shelled hollow MnCo2O4 spheres as anode materials for lithium-ion batteries, Chemical Engineering Journal, 351 ( 2018) 930-938. https://doi.org/10.1016/j.cej.2018.06.163.
[94]
Zhou Liang, Zhao Dongyuan, Lou Xiong Wen. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries, Advanced Materials, 24 ( 2012) 745-748. https://doi.org/10.1002/adma.201104407.
[95]
Zhao Jianbo, Li Man, Li Junru, Wei Chengzhen, He Yuyue, Huang Yixuan, Li Qiaoling. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage, Applied Surface Science, 425 ( 2017) 1158-1167. https://doi.org/10.1016/j.apsusc.2017.07.261.
[96]
Du Liyong, Wang Dongxue, Gu Kuikun, Zhang Mingzhe. Construction of PdO-decorated double-shell ZnSnO3 hollow microspheres for n-propanol detection at low temperature, Inorganic Chemistry Frontiers, 8 ( 2021) 787-795. http://doi.org/10.1039/D0QI01292K.
[97]
Tian Hao, Tian Huajun, Yang Wu, Zhang Fan, Yang Wang, Zhang Qiaobao,Wang Yong, Liu, S. Jian, P Ravi, Silva, Liu Hao, Wang Guoxiu. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries, Advanced Functional Materials, 31 ( 2021) 2101796. https://doi.org/10.1002/adfm.202101796.
[98]
Wang Deli, He Huan, Han Lili, Lin Ruoqian, Wang Jie, Wu Zexing, Liu Hongfang, L. Xin Huolin. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries, Nano Energy, 20 ( 2016) 212-220. https://doi.org/10.1016/j.nanoen.2015.12.019.
[99]
Shi Zixu, Liu Yue, Zhang Yuchen, Sun Jun, Zheng Jingxing, Wei Chengzhen, Du Weimin, Liu Lin, Cheng Cheng. Designed synthesis of yolk-shelled NiCo2O4/MnCo2O4 hollow sphere with boosted performance for supercapacitors, Applied Surface Science, 611 ( 2023) 155758. https://doi.org/10.1016/j.apsusc.2022.155758.
[100]
Wu Guodong, Li Pinjiang, Zhu Congxu, Lei Yan, Zhao Hongxiao, Li Tingting, Yue Hongwei, Dou Baoping, Gao Yuanhao, Yang Xiaogang. Amorphous titanium oxide passivated lithium titanium phosphate electrode for high stable aqueous lithium ion batteries with oxygen tolerance, Electrochimica Acta, 246 ( 2017) 720-729. https://doi.org/10.1016/j.electacta.2017.06.093.
[101]
Li Zhao, Huang Feng, Song Ming, He Changchun, Zhuang Wenchang, Tian Lin. Advances in CoP electrocatalysts for water splitting, Materials Today Energy, 20 ( 2021) 100698. https://doi.org/10.1016/j.mtener.2021.100698.
[102]
Khan F. M. Nizam Uddin, G Mohammad, Rasul, Sayem A. S. M.. Nirmal K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review, Journal of Energy Storage, 71 ( 2023) 108033. https://doi.org/10.1016/j.est.2023.108033.
[103]
Liu Tao, Zhang Liuyang, Cheng Bei, Yu Jiaguo. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage, Advanced Energy Materials, 9 ( 2019) 1803900. https://doi.org/10.1002/aenm.201803900.
[104]
Villevieille Claire. The numerous materials challenges related to post-Li-ion batteries, ACS Materials Letters, 7 ( 2025) 1057-1059. http://doi.org/10.1021/acsmaterialslett.5c00285.
[105]
Fang Shan, Bresser Dominic, Passerini Stefano. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries, Advanced Energy Materials, 10 ( 2020) 1902485. https://doi.org/10.1002/aenm.201902485.
[106]
Wu Lijun, Guo Shoujie, Pu Xiangjun, Yue Hongwei, Li Hao, Li Pinjiang, Li Wei, Cai Kun, Ding Wenjie, Li Longfei, Zhang Yange, Fa Wenjun, Yang Changchun, Zheng Zhi, He Weiwei, Cao Yuliang. Na0. 91MnO2 with an extended layer structure and excellent pseudocapacitive behavior as a cathode material for sodium-ion batteries, ACS Applied Energy Materials, 5 ( 2022) 4505-4512. http://doi.org/10.1021/acsaem.1c04102.
[107]
Zhu Yaqiong, Yang Xin, Xu Lekai, Jia Guanwei, Du Jiang. Hollow microscale and nanoscale structures as anode materials for lithium-ion batteries, Chemistry of Materials, 34 ( 2022) 9803-9822. http://doi.org/10.1021/acs.chemmater.2c02870.
[108]
Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. M.. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407 ( 2000) 496-499. http://doi.org/10.1038/35035045.
[109]
Tabassum Hassina, Zou Ruqiang, Mahmood Asif, Liang Zibin, Wang Qingfei, Zhang Hao, Gao Song, Qu Chong, Guo Wenhan, Guo Shaojun. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes, Advanced Materials, 30 ( 2018) 1705441. https://doi.org/10.1002/adma.201705441.
[110]
Huang Yi, Fang Yongjin, Lu Xue Feng, Luan Deyan, Lou Xiong Wen. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage, Angewandte Chemie International Edition, 59 ( 2020) 19914-19918. https://doi.org/10.1002/anie.202008987.
[111]
Kang Ying, Zhang Yu-Hang, Shi Qi, Shi Hongwei, Xue Dongfeng, Shi Fa-Nian. Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries, Journal of Colloid and Interface Science, 585 ( 2021) 705-715. https://doi.org/10.1016/j.jcis.2020.10.050.
[112]
Su Xin, Wu Qingliu, Li Juchuan, Xiao Xingcheng, Lott Amber, Lu Wenquan, W Brian, Sheldon, Wu Ji. Silicon-based nanomaterials for lithium-ion batteries: A review, Advanced Energy Materials, 4 ( 2014) 1300882. https://doi.org/10.1002/aenm.201300882.
[113]
Li Hao, Chen Zidong, Kang Zhirong, Liu Wei, Chen Yungui. High-density crack-resistant Si-C microparticles for lithium ion batteries, Energy Storage Materials, 56 ( 2023) 40-49. https://doi.org/10.1016/j.ensm.2022.12.045.
[114]
Wei Yixin, Liu Changqu, Cai Meng, Hou Ruohan, Li Kaizhen, Yuan Jichao, Zhang Pengpeng, Shao Guosheng, Zhang Peng, n/a Small. ( Electrospinning meets heterostructures in lithium-sulfur batteries, 2025) 2411838. https://doi.org/10.1002/smll.202411838.
[115]
Shao Qinjun, Zhu Shengdong, Chen Jian. A review on lithium-sulfur batteries: Challenge, development, and perspective, Nano Research, 16 ( 2023) 8097-8138. http://doi.org/10.1007/s12274-022-5227-0.
[116]
Luo Zhenya, Wu Yaqin, Xu Xupeng, Ju Wenqi, Lei Weixin, Wu Dazhuan, Pan Junan, Ouyang Xiaoping. Surface-coated AlF3 nanolayers enable polysulfide confinement within biomass-derived nitrogen-doped hierarchical porous carbon microspheres for improved lithium-sulfur batteries, Journal of Colloid and Interface Science, 660 ( 2024) 657-668. https://doi.org/10.1016/j.jcis.2024.01.123.
[117]
Ji Xiulei, Lee Kyu Tae, F Linda, Nazar. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nature Materials, 8 ( 2009) 500-506. http://doi.org/10.1038/nmat2460.
[118]
Saroha Rakesh, Ka Hye Seon, Dae Park Gi, Cho Chungyeon, Kang Dong-Won, Cho Jung Sang. Long-term stability of lithium-sulfur batteries via synergistic integration of nitrogen-doped graphitic carbon-coated cobalt selenide nanocrystals within porous three-dimensional graphene-carbon nanotube microspheres, Journal of Power Sources, 592 ( 2024) 233893. https://doi.org/10.1016/j.jpowsour.2023.233893.
[119]
Li Zhenwen, Li Peng, Huang Zheng, Wang Dong, Ma Dongshen, Zheng Liyu, Lu Shaojie, Yue Qin. A novel mesoporous carbon pocket with single atom Cr sites for high performance Lithium-Sulfur battery, Chemical Engineering Journal, 496 ( 2024) 153642. https://doi.org/10.1016/j.cej.2024.153642.
[120]
Wu Guozhi, Yang Jie, Li Shanqing, Zhu Ziwen, Sheng Tian, Joo Sang Woo, Huang Jiarui. Molybdenum carbide nanoparticles encapsulated in N-doped carbon nanotubes as a sulfur host for advanced Li-S battery, Electrochimica Acta, 468 ( 2023) 143157. https://doi.org/10.1016/j.electacta.2023.143157.
[121]
Du Zhiming, Lei Zhiping, Yan Honglei, Wang Dongdong, Wang Jiancheng, Yan Jingchong, Li Zhan-Ku, Shui Hengfu, Ren Shibiao, Wang Zhicai, Kong Ying. HNO3 pre-oxidation-tuned microstructures of porous carbon derived from high-sulfur coal for enhancing capture and catalytic conversion of polysulfides, Fuel, 326 ( 2022) 125066. https://doi.org/10.1016/j.fuel.2022.125066.
[122]
Yu Jian, Xiao Jiewen, Li Anran, Yang Zhao, Zeng Liang, Zhang Qianfan, Zhu Yujie, Guo Lin. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries, Angewandte Chemie International Edition, 59 ( 2020) 13071-13078. https://doi.org/10.1002/anie.202004914.
[123]
Pang Quan, Liang Xiao, Yuen Kwok Chun, Kulisch Joern, F Linda, Nazar. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density, Advanced Energy Materials, 7 ( 2017) 1601630. https://doi.org/10.1002/aenm.201601630.
[124]
Hou Yang, Wen Zhenhai, Cui Shumao, Feng Xinliang, Chen Junhong. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation, Nano Letters, 16 ( 2016) 2268-2277. http://doi.org/10.1021/acs.nanolett.5b04496.
[125]
Zhang Juan, Li Jin-Yi, Wang Wen-Peng, Zhang Xing-Hao, Tan Xing-Hua, Chu Wei-Guo, Guo Yu-Guo. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries, Advanced Energy Materials, 8 ( 2018) 1702839. https://doi.org/10.1002/aenm.201702839.
[126]
Ma Lianbo, Zhang Wenjun, Wang Lei, Hu Yi, Zhu Guoyin, Wang Yanrong, Chen Renpeng, Chen Tao, Tie Zuoxiu, Liu Jie, Jin Zhong. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries, ACS Nano, 12 ( 2018) 4868-4876. http://doi.org/10.1021/acsnano.8b01763.
[127]
Tu Shuibin, Zhao Xinxin, Cheng Mingren, Sun Pengfei, He Yongwu, Xu Yunhua. Uniform mesoporous MnO2 nanospheres as a surface chemical adsorption and physical confinement polysulfide mediator for lithium-sulfur batteries, ACS Applied Materials & Interfaces, 11 ( 2019) 10624-10630. http://doi.org/10.1021/acsami.8b20044.
[128]
Zhang Yan, Wang Faming, Liu Chaoqun, Wang Zhenzhen, Kang LiHua, Huang Yanyan, Dong Kai, Ren Jinsong, Qu Xiaogang. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy, ACS Nano, 12 ( 2018) 651-661. http://doi.org/10.1021/acsnano.7b07746.
[129]
Wu Jingyi, Li Xiongwei, Zeng Hongxia, Xue Yang, Chen Fangyan, Xue Zhigang, Ye Yunsheng, Xie Xiaolin. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries, Journal of Materials Chemistry A, 7 ( 2019) 7897-7906. http://doi.org/10.1039/C9TA00458K.
[130]
Yue Zhang Chao, Zhang Chaoqi, Pan Jiang Long, Sun Guo Wen, Shi Zude, Li Canhuang, Chang Xingqi, Sun Geng Zhi, Yuan Zhou Jin, Cabot Andreu. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium-sulfur batteries, eScience, 2 ( 2022) 405-415. https://doi.org/10.1016/j.esci.2022.07.001.
[131]
Liang Zibin, Zhao Ruo, Qiu Tianjie, Zou Ruqiang, Xu Qiang. Metal-organic framework-derived materials for electrochemical energy applications, EnergyChem, 1 ( 2019) 100001. https://doi.org/10.1016/j.enchem.2019.100001.
[132]
Li Qing, Xu Yuxia, Zheng Shasha, Guo Xiaotian, Xue Huaiguo, Pang Huan. Recent progress in some amorphous materials for supercapacitors, Small, 14 ( 2018) 1800426. https://doi.org/10.1002/smll.201800426.
[133]
Li Tingting, Zhu Congxu, Yang Xiaogang, Gao Yuanhao, He Weiwei, Yue Hongwei, Zhao Hongxiao. Co3O4 nanoneedle@electroactive nickel boride membrane core/shell arrays: A novel hybrid for enhanced capacity, Electrochimica Acta, 246 ( 2017) 226-233. https://doi.org/10.1016/j.electacta.2017.06.054.
[134]
Li Wei, Wu Ming, Shi Peng, Li Tingting, Yue Hongwei, Dong Zhenwei, Gao Yuanhao, Lou Xiaojie. Enhanced energy storage performance of advanced hybrid supercapacitors derived from ultrafine Ni-P@Ni nanotubes with novel three-dimensional porous network synthesized via reaction temperatures regulation, Electrochimica Acta, 331 ( 2020) 135440. https://doi.org/10.1016/j.electacta.2019.135440.
[135]
Li Wei, Chen Tianqi, Li Ao, Shi Peng, Wu Ming, Li Tingting, Yue Hongwei, Chen Yifeng, Huang Baojun, Lou Xiaojie. High energy density hybrid supercapacitors derived from novel Ni3Se2 nanowires in situ constructed on porous nickel foam, Inorganic Chemistry Frontiers, 8 ( 2021) 1093-1101. http://doi.org/10.1039/D0QI01204A.
[136]
Zheng Jinfeng, Lian Xiao, Wu Mingzai, Zheng Fangcai, Gao Yuanhao, Niu Helin. A synergistic strategy combing amorphous Ni3S4 quantum dots and zeolite imidazole framework nanosheets for enhanced supercapacitor performance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623 ( 2021) 126710. https://doi.org/10.1016/j.colsurfa.2021.126710.
[137]
Li Wei, Huang Zhongzheng, Jia Yaduo, Cui Yunlong, Shi Peng, Li Tingting, Yue Hongwei, Wang Jinxiao, He Weiwei, Lou Xiaojie. Sulfate assisted synthesis of α-type nickel hydroxide nanowires with 3D reticulation for energy storage in hybrid supercapacitors, Materials Chemistry Frontiers, 6 ( 2022) 94-102. http://doi.org/10.1039/D1QM01298C.
[138]
Nakhanivej Puritut, Dou Qingyun, Xiong Peixun, Seok Park Ho. Two-dimensional pseudocapacitive nanomaterials for high-energy- and high-power-oriented applications of supercapacitors, Accounts of Materials Research, 2 ( 2021) 86-96. http://doi.org/10.1021/accountsmr.0c00070.
[139]
Min Jie, Liu Jun, Lei Ming, Wang Wenjun, Lu Yakun, Yang Linyu, Yang Qian, Liu Gang, Su Nan. Self-assembly of parallelly aligned NiO hierarchical nanostructures with ultrathin nanosheet subunits for electrochemical supercapacitor applications, ACS Applied Materials & Interfaces, 8 ( 2016) 780-791. http://doi.org/10.1021/acsami.5b09997.
[140]
Huang Ming, Li Zhao Xiao, Li Fei, Li Zhang Li, Xin Zhang Yu. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes, Journal of Power Sources, 277 ( 2015) 36-43. https://doi.org/10.1016/j.jpowsour.2014.12.005.
[141]
Li Sumin, Yang Kang, Ye Pingwei, Ma Kairui, Zhang Zhao, Huang Qiang. Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes, Applied Surface Science, 503 ( 2020) 144090. https://doi.org/10.1016/j.apsusc.2019.144090.
[142]
Liu Shude, Ni Dixing, Li Hai-Feng, Hui Kwun Nam, Ouyang Chu-Ying, Jun Seong Chan. Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co), Journal of Materials Chemistry A, 6 ( 2018) 10674-10685. http://doi.org/10.1039/C8TA00540K.
[143]
Guan Cao, Liu Ximeng, Ren Weina, Li Xin, Cheng Chuanwei, Wang John. Rational Design of Metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis, Advanced Energy Materials, 7 ( 2017) 1602391. https://doi.org/10.1002/aenm.201602391.
[144]
Wang Liang, Jiao Xinyan, Liu Peng, Ouyang Yu, Xia Xifeng, Lei Wu, Hao Qingli. Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors, Applied Surface Science, 427 ( 2018) 174-181. https://doi.org/10.1016/j.apsusc.2017.07.221.
[145]
Xu Kaibing, Yang Jianmao, Hu Junqing. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors, Journal of Colloid and Interface Science, 511 ( 2018) 456-462. https://doi.org/10.1016/j.jcis.2017.09.113.
[146]
Dong Yanying, Wang Ying, Xu Yanan, Chen Chengcheng, Wang Yijing, Jiao Lifang, Yuan Huatang. Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor, Electrochimica Acta, 225 ( 2017) 39-46. https://doi.org/10.1016/j.electacta.2016.12.109.
[147]
Du Juan, Liu Lei, Yu Yifeng, Lv Haijun, Zhang Yue, Chen Aibing. Confined pyrolysis for direct conversion of solid resin spheres into yolk-shell carbon spheres for supercapacitor, Journal of Materials Chemistry A, 7 ( 2019) 1038-1044. http://doi.org/10.1039/C8TA10266J.
[148]
Sun Yong-Gang, Piao Jun-Yu, Hu Lin-Lin, Bin De-Shan, Lin Xi-Jie, Duan Shu-Yi, Cao An-Min, Wan Li-Jun. Controlling the reaction of nanoparticles for hollow metal oxide nanostructures, Journal of the American Chemical Society, 140 ( 2018) 9070-9073. http://doi.org/10.1021/jacs.8b04948.
[149]
Chang Xiaoya, Zang Lei, Liu Song, Wang Mengying, Guo Huinan, Wang Caiyun, Wang Yijing. In situ construction of yolk-shell zinc cobaltite with uniform carbon doping for high performance asymmetric supercapacitors, Journal of Materials Chemistry A, 6 ( 2018) 9109-9115. http://doi.org/10.1039/C8TA01759J.
[150]
Kim Ju Hyeong, Dae Park Gi, Hyun Yang Su, Hoo Hong Jeong, Kim Jin Koo, Chan Kang Yun. Uniquely structured iron hydroxide-carbon nanospheres with yolk-shell and hollow structures and their excellent lithium-ion storage performances, Applied Surface Science, 542 ( 2021) 148637. https://doi.org/10.1016/j.apsusc.2020.148637.
[151]
Guan Huijuan, Zhang Jun, Liu Yang, Zhao Yafei, Zhang Bing. Rapid quantitative determination of hydrogen peroxide using an electrochemical sensor based on PtNi alloy/CeO2 plates embedded in N-doped carbon nanofibers, Electrochimica Acta, 295 ( 2019) 997-1005. https://doi.org/10.1016/j.electacta.2018.11.126.
[152]
Li Tingting, Jing Tianyun, Jia Xiaotian, Guo Shoujie, Li Wei, Yue Hongwei, Luo Zhihui. Galvanic replacement mediated 3D porous PtCu nano-frames for enhanced ethylene glycol oxidation, Chemical Communications, 55 ( 2019) 14526-14529. http://doi.org/10.1039/C9CC06773F.
[153]
Li Tingting, Yang Shaokang, Zuo Yunpeng, Li Wei, Yue Hongwei, Kment Štěpán, Chai Yang. Hydrogen bond stabilized β-Ni(OH)x-SO4 interlaminar materials for highly active supercapacitors, Inorganic Chemistry Frontiers, 10 ( 2023) 1001-1010. http://doi.org/10.1039/D2QI01992B.
[154]
Hou Yujiao, Han Peilin, Zhang Like, Li Hao, Xu Zhihong. pH-controlled assembling of POM-based metal-organic frameworks for use as supercapacitors and efficient oxidation catalysts for various sulfides, Inorganic Chemistry Frontiers, 10 ( 2023) 148-157. http://doi.org/10.1039/D2QI01922A.
[155]
Li Tingting, Jing Tianyun, Rao Dewei, Mourdikoudis Stefanos, Zuo Yunpeng, Wang Mengye. Two-dimensional materials for electrocatalysis and energy storage applications, Inorganic Chemistry Frontiers, 9 ( 2022) 6008-6046. http://doi.org/10.1039/D2QI01911F.
[156]
Li Dapeng, Zhang Peng, Duan Jiangtao, Wu Yaxin, Ding Na, Wan Zhenyu, Chen Longqi, Xu Jingli, Ge Suxiang, Ma Juntao. Simultaneous activation of KHSO5 and BuOOH by iron octacarboxyphthalocyanine loaded on fly ash microspheres to boost pollutant degradation, Journal of Industrial and Engineering Chemistry, 114 ( 2022) 242-253. https://doi.org/10.1016/j.jiec.2022.07.014.
[157]
Yuan Rongrong, Gu Yue, Ren Hao, Liu Jia, Zhu Guangshan. Porous aromatic framework as an efficient metal-free electro-catalyst for non-enzymatic H2O2 sensing, Chemistry - A European Journal, 23 ( 2017) 9467-9471. https://doi.org/10.1002/chem.201701833.
[158]
Mei Wanwan, Yang Xiaogang, Li Lei, Tong Yuping, Lei Yan, Li Pinjiang, Zheng Zhi. Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanodes for water oxidation, ACS Sustainable Chemistry & Engineering, 8 ( 2020) 3606-3616. http://doi.org/10.1021/acssuschemeng.9b06175.
[159]
Li Yuanjian, Wang Wenyu, Huang Baojun, Mao Zhifei, Wang Rui, He Beibei, Gong Yansheng, Wang Huanwen. Abundant heterointerfaces in MOF-derived hollow CoS2-MoS2 nanosheet array electrocatalysts for overall water splitting, Journal of Energy Chemistry, 57 ( 2021) 99-108. https://doi.org/10.1016/j.jechem.2020.08.064.
[160]
Jing Tianyun, Zhang Ning, Zhang Chaonan, Mourdikoudis Stefanos, Sofer Zdeněk, Li Wei, Li Pinjiang, Li Tingting, Zuo Yunpeng, Rao Dewei. Improving C-N-FeOx oxygen evolution electrocatalysts through hydroxyl-modulated local coordination environment, ACS Catalysis, 12 ( 2022) 7443-7452. http://doi.org/10.1021/acscatal.2c01153.
[161]
Yang Xiaogang, Zheng Zhi, Hu Jundie, Qu Jiafu, Ma Dekun, Li Jingsha, Guo Chunxian, Li Chang Ming.Observation of 4th-order water oxidation kinetics by time-resolved photovoltage spectroscopy, iScience, 24 ( 2021) 103500. https://doi.org/10.1016/j.isci.2021.103500.
[162]
Wang Cheng, Xu Hui, Shang Hongyuan, Jin Liujun, Chen Chunyan, Wang Yuan, Yuan Mengyu, Du Yukou. Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquid fuel electrocatalysis, Inorganic Chemistry, 59 ( 2020) 3321-3329. http://doi.org/10.1021/acs.inorgchem.0c00132.
[163]
Xu Hui, Shang Hongyuan, Wang Cheng, Du Yukou. Ultrafine Pt-based nanowires for advanced catalysis, Advanced Functional Materials, 30 ( 2020) 2000793. https://doi.org/10.1002/adfm.202000793.
[164]
Zheng Shasha, Li Qing, Xue Huaiguo, Pang Huan, Xu Qiang. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage, National Science Review, 7 ( 2020) 305-314. http://doi.org/10.1093/nsr/nwz137.
[165]
Liu Guanyu, Sheng Yuan, W. Ager Joel, Kraft Markus, Xu Rong. Research advances towards large-scale solar hydrogen production from water, EnergyChem, 1 ( 2019) 100014. https://doi.org/10.1016/j.enchem.2019.100014.
[166]
Osgood Hannah, V Surya, Devaguptapu, Xu Hui, Cho Jaephil, Wu Gang, metal Transition, Co, Ni Fe. Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media, Nano Today, 11 ( 2016) 601-625. https://doi.org/10.1016/j.nantod.2016.09.001.
[167]
Xu Hui, Wei Jingjing, Zhang Ke, Zhang Min, Liu Chaofan, Guo Jun, Du Yukou. Constructing bundle-like Co-Mn oxides and Co-Mn selenides for efficient overall water splitting, Journal of Materials Chemistry A, 6 ( 2018) 22697-22704. http://doi.org/10.1039/C8TA07449F.
[168]
Du Cheng, Li Ping, Zhuang Zhihua, Fang Zhongying, He Shuijian, Feng Ligang, Chen Wei. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis, Coordination Chemistry Reviews, 466 ( 2022) 214604. https://doi.org/10.1016/j.ccr.2022.214604.
[169]
Wang Cheng, Shang Hongyuan, Li Jie, Wang Yuan, Xu Hui, Wang Chuanyi, Guo Jun, Du Yukou. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis, Chemical Engineering Journal, 420 ( 2021) 129805. https://doi.org/10.1016/j.cej.2021.129805.
[170]
Lu Qi, Wu Han, Zheng Xuerong, Chen Yanan, L Andrey, Rogach, Han Xiaopeng, Deng Yida, Hu Wenbin. Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co N C moiety for enhanced oxygen electrocatalysis in Zn-Air batteries, Advanced Science, 8 ( 2021) 2101438. https://doi.org/10.1002/advs.202101438.
[171]
Tie Weiwei. Surjya Sarathi Bhattacharyya, Tianci Ma, Shuangyi Yuan, Minghan Chen, Weiwei He, Seung Hee Lee, Improving photoexcited carrier separation through Z-scheme W18O49/BiOBr heterostructure coupling carbon quantum dots for efficient photoelectric response and tetracycline photodegradation, Carbon, 231 ( 2025) 119707. https://doi.org/10.1016/j.carbon.2024.119707.
[172]
Tie Weiwei, Du Zhaoyu, Yue Hongwei. Surjya Sarathi Bhattacharyya, Zhi Zheng, Weiwei He, Seung Hee Lee, Self-assembly of carbon nanotube/graphitic-like flake/BiOBr nanocomposite with 1D/2D/3D heterojunctions for enhanced photocatalytic activity, Journal of Colloid and Interface Science, 579 ( 2020) 862-871. https://doi.org/10.1016/j.jcis.2020.06.088.
[173]
Tie Weiwei, Zheng Zhao, Xu Chao, Zheng Zhi. Surjya Sarathi Bhattacharyya, Weiwei He, Seung Hee Lee, Facile synthesis of carbon nanotubes covalently modified with ZnO nanorods for enhanced photodecomposition of dyes, Journal of Colloid and Interface Science, 537 ( 2019) 652-660. https://doi.org/10.1016/j.jcis.2018.11.042.
[174]
Ge Suxiang, Li Dapeng, Cui Zhankui, Zhang Yakun, Zhang Sen, Zhang Tianyi, Jia Gaoyang, He Weiwei, Zheng Zhi. Regulating the relative content of O2- and OH for PCPNa degradation on BiOCl plates with controllable exposed crystal faces and surface oxygen vacancies, Separation and Purification Technology, 228 ( 2019) 115743. https://doi.org/10.1016/j.seppur.2019.115743.
[175]
Ge Suxiang, Wang Yafei, Song Panting, Zhan Guangming, Liu Chunhui, Ding Xing, Li Dapeng, Mao Chengliang, Zheng Zhi, Zhang Lizhi. Photo-switchable In(III)-to-In(I) site on oxygen vacancy-laden BiOCl surface for selective degradation of monocyclic aromatic compounds, Separation and Purification Technology, 326 ( 2023) 124716. https://doi.org/10.1016/j.seppur.2023.124716.
[176]
Liu Manying, Yang Kangni, Li Zhenyang, Fan Erchuang, Fu Huafeng, Zhang Like, Zhang Yange, Zheng Zhi. The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution, Chemical Communications, 58 ( 2022) 92-95. http://doi.org/10.1039/D1CC05619K.
[177]
Li Lei, Yang Xiaogang, Lei Yan, Yu Haili, Yang Zhongzheng, Zheng Zhi, Wang Dunwei. Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar Mo-doped BiVO4 photoanode, Chemical Science, 9 ( 2018) 8860-8870. http://doi.org/10.1039/C8SC03297A.
[178]
Wang Jiaji, Li Lei, Lei Yan, Zhang Yange, Li Pinjiang, Zhu Congxu, Wang Ke, Zheng Zhi, Yang Xiaogang. Facile chemical solution transportation for direct recycling of iron oxide rust waste to hematite films, ACS Sustainable Chemistry & Engineering, 6 ( 2018) 12232-12240. http://doi.org/10.1021/acssuschemeng.8b02581.
[179]
Ma Minzhi, Fang Yuanxing, Huang Zeai, Wu Sixin, He Weiwei, Ge Suxiang, Zheng Zhi, Zhou Ying, Fa Wenjun, Wang Xinchen. Mechanistic insights into H2O dissociation in overall photo-/electro-catalytic CO2 reduction, Angewandte Chemie International Edition, 64 ( 2025) e202425195. https://doi.org/10.1002/anie.202425195.
[180]
Ma Minzhi, Huang Zeai, Li Lina, Zhang Wenda, Guo Rui, Zhang Ruiyang, Fa Wenjun, Han Chunqiu, Cao Yuehan, Yu Shan, Zhou Ying. Modulating photogenerated electron density of Pr single-atom sites by coordination environment engineering for boosting photoreduction of CO2 to CH3OH, Applied Catalysis B: Environmental, 330 ( 2023) 122626. https://doi.org/10.1016/j.apcatb.2023.122626.
[181]
Ma Minzhi, Huang Zeai, Wang Rui, Zhang Ruiyang, Yang Tian, Rao Zhiqiang, Fa Wenjun, Zhang Fengying, Cao Yuehan, Yu Shan, Zhou Ying. Targeted H2O activation to manipulate the selective photocatalytic reduction of CO2 to CH3OH over carbon nitride-supported cobalt sulfide, Green Chemistry, 24 ( 2022) 8791-8799. http://doi.org/10.1039/D2GC03226K.
[182]
Xu Yanan, Gao Zhihong, Peng Li, Liu Kang, Yang Yang, Qiu Rongxing, Yang Shuliang, Wu Chenhao, Jiang Jiaheng, Wang Yanliang, Tan Wenjun, Wang Hongtao, Li Jun. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol, Journal of Catalysis, 414 ( 2022) 236-244. https://doi.org/10.1016/j.jcat.2022.09.011.
[183]
Ma Minzhi, Huang Zeai, E Dmitry, Doronkin, Fa Wenjun, Rao Zhiqiang, Zou Yanzhao, Wang Rui, Zhong Yunqian, Cao Yuehan, Zhang Ruiyang, Zhou Ying. Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol, Applied Catalysis B: Environmental, 300 ( 2022) 120695. https://doi.org/10.1016/j.apcatb.2021.120695.
[184]
Zhu Shasha, Wang Dunwei. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities, Advanced Energy Materials, 7 ( 2017) 1700841. https://doi.org/10.1002/aenm.201700841.
[185]
Niu Kai-Kai, Luan Tian-Xiang, Cui Jing, Liu Hui, Xing Ling-Bao, Li Pei-Zhou. Red-light-based effective photocatalysis of a photosensitive covalent organic framework triggered singlet oxygen, ACS Catalysis, 14 ( 2024) 2631-2641. http://doi.org/10.1021/acscatal.3c05454.
[186]
Chen Ruotian, Ren Zefeng, Liang Yu, Zhang Guanhua, Dittrich Thomas, Liu Runze, Liu Yang, Zhao Yue, Pang Shan, An Hongyu, Ni Chenwei, Zhou Panwang, Han Keli, Fan Fengtao, Li Can. Spatiotemporal imaging of charge transfer in photocatalyst particles, Nature, 610 ( 2022) 296-301. http://doi.org/10.1038/s41586-022-05183-1.
[187]
Xue Zhong-Hua, Luan Deyan, Zhang Huabin, Lou Xiong Wen. Single-atom catalysts for photocatalytic energy conversion, Joule, 6 ( 2022) 92-133. https://doi.org/10.1016/j.joule.2021.12.011.
[188]
Dong Qian, Chen Zhiwu, Zhao Bo, Zhang Yizeng, Lu Zhenya, Wang Xin, Li Jinliang, Chen Wei. In situ fabrication of niobium pentoxide/graphitic carbon nitride type-II heterojunctions for enhanced photocatalytic hydrogen evolution reaction, Journal of Colloid and Interface Science, 608 ( 2022) 1951-1959. https://doi.org/10.1016/j.jcis.2021.10.161.
[189]
Li Hexing, Bian Zhenfeng, Zhu Jian, Zhang Dieqing, Li Guisheng, Huo Yuning, Li Hui, Lu Yunfeng. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, Journal of the American Chemical Society, 129 ( 2007) 8406-8407. http://doi.org/10.1021/ja072191c.
[190]
Li Wei, Deng Yonghui, Wu Zhangxiong, Qian Xufang, Yang Jianping, Wang Yao, Gu Dong, Zhang Fan, Tu Bo, Zhao Dongyuan. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells, Journal of the American Chemical Society, 133 ( 2011) 15830-15833. http://doi.org/10.1021/ja2055287.
[191]
Jiang Longbo, Yuan Xingzhong, Pan Yang, Liang Jie, Zeng Guangming, Wu Zhibin, Wang Hou. Doping of graphitic carbon nitride for photocatalysis: A review, Applied Catalysis B: Environmental, 217 ( 2017) 388-406. https://doi.org/10.1016/j.apcatb.2017.06.003.
[192]
Feng Yiping, Chen Guang, Zhang Yijian, Li Daguang, Ling Chen, Wang Qiaoying, Liu Guoguang. Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels, Journal of Hazardous Materials, 424 ( 2022) 127362. https://doi.org/10.1016/j.jhazmat.2021.127362.
[193]
Liu Dong, Li Chunling, Zhao Congyue, Zhao Qian, Niu Tianqi, Pan Likun, Xu Pengwei, Zhang Fengquan, Wu Weidong, Ni Tianjun. Facile synthesis of three-dimensional hollow porous carbon doped polymeric carbon nitride with highly efficient photocatalytic performance, Chemical Engineering Journal, 438 ( 2022) 135623. https://doi.org/10.1016/j.cej.2022.135623.
[194]
Zheng Qinmin, P David, Durkin, E Justin, Elenewski, Sun Yingxue, A Nathan, Banek, Hua Likun, Chen Hanning, J Michael, Wagner, Zhang Wen, Shuai Danmeng. Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment, Environmental Science & Technology, 50 ( 2016) 12938-12948. http://doi.org/10.1021/acs.est.6b02579.
[195]
Liang Qinghua, Liu Xiaojuan, Wang Jiajia, Liu Yang, Liu Zhifeng, Tang Lin, Shao Binbin, Zhang Wei, Gong Shanxi, Cheng Min, He Qingyun, Feng Chengyang. In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories, Journal of Hazardous Materials, 401 ( 2021) 123355. https://doi.org/10.1016/j.jhazmat.2020.123355.
[196]
Gao Jiqiang, Liu Chunhui, Li Zhongjuan, Liang Haotian, Ao Yuhui, Zhao Jinbo, Wang Yuchao, Wu Yuanqi, Liu Yu. Catalytic C-C cleavage/alkyne-carbonyl metathesis sequence of cyclobutanones, Organic Letters, 22 ( 2020) 3993-3999. http://doi.org/10.1021/acs.orglett.0c01317.
[197]
Liu Chunhui, Li Shi-Jun, Han Peilin, Qu Ling-Bo, Lan Yu. How to inverse the chemoselectivity of nucleophilic addition by using a Lewis acid/Brønsted base pair catalyst: A theoretical view, Molecular Catalysis, 499 ( 2021) 111318. https://doi.org/10.1016/j.mcat.2020.111318.
[198]
Liu Chunhui, Han Peilin, Zhang Xusheng, Qiao Yan, Xu Zhihong, Zhang Yange, Li Dapeng, Wei Donghui, Lan Yu. NHC-catalyzed transformation reactions of imines: Electrophilic versus nucleophilic attack, The Journal of Organic Chemistry, 87 ( 2022) 7989-7994. http://doi.org/10.1021/acs.joc.2c00621.
[199]
Liu Chunhui, Han Peilin, Li Dapeng, Qu Ling-Bo, Qiao Yan, Lan Yu, of Mechanistic study. 4 + 3]cyclization of N, N′-cyclic azomethine imines with isatoic anhydrides under Brønsted acid catalysis, Molecular Catalysis, 525 ( 2022) 112300. https://doi.org/10.1016/j.mcat.2022.112300.
[200]
Liu Chunhui, Zhang Xusheng, Han Peilin, Hou Yujiao, Zhang Shixing, Ge Suxiang, Li Dapeng, Jiang Yubo, Li Yongyuan. Theoretical studies on the competing mechanism and origin of diastereoselectivity of NHC-catalyzed intramolecular [3 + 2] annulations of ynals, The Journal of Physical Chemistry A, 129 ( 2025) 2725-2733. http://doi.org/10.1021/acs.jpca.4c08775.
[201]
Chen X., Zhang X., Xiao X., Wang Z., Zhao J.. Recent developments on understanding charge transfer in molecular electron donor-acceptor systems, Angewandte Chemie International Edition, 62 ( 2023) e202216010. http://doi.org/10.1002/anie.202216010.
[202]
Chen Yuwei, Yang Lixia, Li Chao, Wu Yuqiu, Lv Xiao, Wang Hairen, Qu Jun'e. In situ hydrothermal oxidation of ternary FeCoNi alloy electrode for overall water splitting, Energy & Environmental Materials, 7 ( 2024) e12590. https://doi.org/10.1002/eem2.12590.
[203]
Zhang Fei, Li Yukun, Ding Bin, Shao Guosheng, Li Neng, Zhang Peng. Electrospinning photocatalysis meet in situ irradiated XPS: Recent mechanisms advances and challenges, Small, 19 ( 2023) 2303867. https://doi.org/10.1002/smll.202303867.
[204]
Krishna D. Nanda Gopala. John Philip, Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges, Applied Surface Science Advances, 12 ( 2022) 100332. https://doi.org/10.1016/j.apsadv.2022.100332.
[205]
Greczynski G., Hultman L.. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing, Progress in Materials Science, 107 ( 2020) 100591. https://doi.org/10.1016/j.pmatsci.2019.100591.
[206]
Zhang Jianjun, Zhang Liuyang, Wang Wang, Yu Jiaguo. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst, The Journal of Physical Chemistry Letters, 13 ( 2022) 8462-8469. http://doi.org/10.1021/acs.jpclett.2c02125.
[207]
Li Yukun, Wang Li, Zhang Fei, Zhang Wentao, Shao Guosheng, Zhang Peng. Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS, Advanced Science, 10 ( 2023) 2205020. https://doi.org/10.1002/advs.202205020.
[208]
Zhang Pengpeng, Xue Chao, Li Yukun, Guo Shuaiwei, Zhang Xilai, Zhang Peng, Shao Guosheng. Rational regulation on charge spatial separation and directional migration in the yolk-shell structural SiO2/Ni2P/rGO/Cd0. 5Zn0. 5S nanoreactor for efficient photocatalytic H2 evolution, Chemical Engineering Journal, 404 ( 2021) 126497. https://doi.org/10.1016/j.cej.2020.126497.
[209]
Li Yukun, Zhang Yongshang, Hou Ruohan, Ai Yinyin, Cai Meng, Shi Zuhao, Zhang Peng, Shao Guosheng. Revealing electron numbers-binding energy relationships in heterojunctions via in-situ irradiated XPS, Applied Catalysis B: Environment and Energy, 356 ( 2024) 124223. https://doi.org/10.1016/j.apcatb.2024.124223.
[210]
Song Ning, Jiang Jizhou, Hong Shihuan, Wang Yun, Li Chunmei, Dong Hongjun. State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion, Chinese Journal of Catalysis, 59 ( 2024) 38-81. https://doi.org/10.1016/S1872-2067(23)64622-4.
[211]
Wang Jiamei, Jiang Jizhou, Li Fangyi, Zou Jing, Xiang Kun, Wang Haitao, Li Youji, Li Xin. Emerging carbon-based quantum dots for sustainable photocatalysis, Green Chemistry, 25 ( 2023) 32-58. http://doi.org/10.1039/D2GC03160D.
[212]
Osawa Masatoshi. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bulletin of the Chemical Society of Japan, 70 ( 1997) 2861-2880. http://doi.org/10.1246/bcsj.70.2861.
[213]
Hartstein A., Kirtley J. R., Tsang J. C.. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers, Physical Review Letters, 45 ( 1980) 201-204. http://doi.org/10.1103/PhysRevLett.45.201.
[214]
Osawa Masatoshi, Ataka Ken-Ichi, Yoshii Katsumasa, Nishikawa Yuji. Surface-Enhanced Infrared Spectroscopy: The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles, Appl. Spectrosc., 47 ( 1993) 1497-1502. http://doi.org/10.1366/0003702934067478.
[215]
Krauth O., Fahsold G., Pucci A.. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001), The Journal of Chemical Physics, 110 ( 1999) 3113-3117. http://doi.org/10.1063/1.477907.
[216]
M. Kosower Edward, Markovich Gil, Borz Galina. Surface-enhanced infrared absorption of p-nitrobenzoic acid on planar silver halide fiber, The Journal of Physical Chemistry B, 108 ( 2004) 12873-12876. http://doi.org/10.1021/jp048192y.
[217]
Aroca R. F., Ross D. J., Domingo C.. Surface-enhanced infrared spectroscopy, Appl Spectrosc, 58 ( 2004) 324a-338a. http://doi.org/10.1366/0003702042475420.
[218]
Nishikawa Yuji, Fujiwara Kunihiro, Ataka Kenichi, Osawa Masatoshi. Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers, Analytical Chemistry, 65 ( 1993) 556-562. http://doi.org/10.1021/ac00053a011.
[219]
Ataka Kenichi, Heberle Joachim. Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer, Biopolymers, 82 ( 2006) 415-419. http://doi.org/10.1002/bip.20501.
[220]
Martin I., Goormaghtigh E., Ruysschaert J. M.. Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1614 ( 2003) 97-103. http://doi.org/https://doi.org/10.1016/S0005-2736(03)00167-6.
[221]
Kozuch Jacek, Ataka Kenichi, Heberle Joachim. Surface-enhanced infrared absorption spectroscopy, Nature Reviews Methods Primers, 3 ( 2023) 70. http://doi.org/10.1038/s43586-023-00253-8.
[222]
Yang Xuan, Nash Jared, Oliveira Nicholas, Yan Yushan, Xu Bingjun. Understanding the pH dependence of underpotential deposited hydrogen on platinum, Angewandte Chemie International Edition, 58 ( 2019) 17718-17723. https://doi.org/10.1002/anie.201909697.
[223]
Yang Chang, An Lulu, Mi Zhensheng, Wang Guangzhe, Zhang Chenhao, Kong Weijie, Yang Junhao, Xiao Li, Zhuang Lin, Wang Deli. Unconventional-phase engineering of RuGa intermetallics for boosting alkaline hydrogen-electrode reactions, Journal of Materials Chemistry A, 13 ( 2025) 7158-7167. http://doi.org/10.1039/D4TA08846H.
[224]
Zhu Shangqian, Qin Xueping, Xiao Fei, Yang Shuangli, Xu Yuan, Tan Zhuo, Li Jiadong, Yan Jiawei, Chen Qing, Chen Mingshu, Shao Minhua. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum, Nature Catalysis, 4 ( 2021) 711-718. http://doi.org/10.1038/s41929-021-00663-5.
[225]
Shen Tao, Zhang Jingjing, Chen Ke, Deng Shaofeng, Wang Deli. Recent progress of palladium-based electrocatalysts for the formic acid oxidation reaction, Energy & Fuels, 34 ( 2020) 9137-9153. http://doi.org/10.1021/acs.energyfuels.0c01820.
[226]
Chen Aicheng, Ostrom Cassandra. Palladium-based nanomaterials: Synthesis and electrochemical applications, Chemical Reviews, 115 ( 2015) 11999-12044. http://doi.org/10.1021/acs.chemrev.5b00324.
[227]
Wang Wenlan, Kang Jinwei, Song Linna, Xu Shiqin, Zhang Qixian, Yuan Junhua. Porous octahedral PdRuCu nanocages for highly efficient electrochemical oxidation of formic acid, Journal of Alloys and Compounds, 1038 ( 2025) 182752. https://doi.org/10.1016/j.jallcom.2025.182752.
[228]
Liu Juanjuan, Zou Shihui, Xiao Liping, Fan Jie. Well-dispersed bimetallic nanoparticles confined in mesoporous metal oxides and their optimized catalytic activity for nitrobenzene hydrogenation, Catalysis Science & Technology, 4 ( 2014) 441-446. http://doi.org/10.1039/C3CY00689A.
[229]
Sun Lizhi, Lv Hao, Feng Ji, Guselnikova Olga, Wang Yanzhi, Yamauchi Yusuke, Liu Ben. Noble-metal-based hollow mesoporous nanoparticles: Synthesis strategies and applications, advanced materials, 34 ( 2022) 2201954. https://doi.org/10.1002/adma.202201954.
[230]
Zhang Lili, Lei Yuanting, Wang Xiaochen, Lv Enyu, Li Jinzhan, Zhang Ning, Wang Dan, Zhao Yafei, Shang Huishan, Zhang Bing. Synergistic long-range interaction of Co-Cu dual-atom sites on hollow CeO2 nanostructures for bifunctional oxygen electrocatalysis, Advanced Functional Materials, n/a ( 2025) e11730. https://doi.org/10.1002/adfm.202511730.
[231]
Feng Chen, Zhang Zhirong, Wang Dongdi, Kong Yuan, Wei Jie, Wang Ruyang, Ma Peiyu, Li Hongliang, Geng Zhigang, Zuo Ming, Bao Jun, Zhou Shiming, Zeng Jie. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution, Journal of the American Chemical Society, 144 ( 2022) 9271-9279. http://doi.org/10.1021/jacs.2c00533.
[232]
Hu Yang, Zheng Yao, Jin Jing, Wang Yantao, Peng Yong, Yin Jie, Shen Wei, Hou Yichao, Zhu Liu, An Li, Lu Min, Xi Pinxian, Yan Chun-Hua. Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction, Nature Communications, 14 ( 2023) 1949. http://doi.org/10.1038/s41467-023-37751-y.
[233]
Zhang Haijuan, Xu Hengyue, Chen Jie, Guan Daqin, Hu Zhiwei, Xu Xiaomin, Lin Zezhou, Sun Hainan, Sun Xiao, Tang Jiayi, Pao Chih-Wen, Chen Chien-Te, Zhou Wei, Wang Chunchang, Guo Youmin, Shao Zongping. Self-optimized interfacial Co-O-Ru motifs of hollow nanotube composites Trigger Interfacial Lattice Oxygen Participation and Diffusion, ACS Nano, 19 ( 2025) 25917-25929. http://doi.org/10.1021/acsnano.5c05834.
[234]
Li N., Yang Y., Shi Z., Lan Z., Arramel A., Zhang P., Ong W. J., Jiang J., Lu J..Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites, iScience, 25 ( 2022) 103753. http://doi.org/10.1016/j.isci.2022.103753.
[235]
Najafi Leyla, Bellani Sebastiano, Oropesa-Nuñez Reinier, Prato Mirko, Martín-García Beatriz, Brescia Rosaria, Bonaccorso Francesco, nanotube-supported Carbon. MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting, ACS Nano, 13 ( 2019) 3162-3176. http://doi.org/10.1021/acsnano.8b08670.
[236]
Subagyo Riki, Yudhowijoyo Azis. Novia Amalia Sholeha, Sutrisno Salomo Hutagalung, Didik Prasetyoko, Muhammad Danang Birowosuto, Arramel Arramel, Jizhou Jiang, Yuly Kusumawati, Recent advances of modification effect in Co3O4-based catalyst towards highly efficient photocatalysis, Journal of Colloid and Interface Science, 650 ( 2023) 1550-1590. https://doi.org/10.1016/j.jcis.2023.07.117.
[237]
Wang Ying, Zhang Zizhong, Zhang Lina, Luo Zhongbin, Shen Jinni, Lin Huaxiang, Long Jinlin, C. S. Wu Jeffrey, Fu Xianzhi, Wang Xuxu, Li Can. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure, Journal of the American Chemical Society, 140 ( 2018) 14595-14598. http://doi.org/10.1021/jacs.8b09344.
[238]
Zou Jing, Wu Jing, Wang Yizhou, Deng Fengxia, Jiang Jizhou, Zhang Yizhou, Liu Song, Li Neng, Zhang Han, Yu Jiaguo, Zhai Tianyou, N Husam, Alshareef. Additive-mediated intercalation and surface modification of MXenes, Chemical Society Reviews, 51 ( 2022) 2972-2990. http://doi.org/10.1039/D0CS01487G.
[239]
Li Fangyi, Anjarsari Yulianti, Wang Jiamei, Azzahiidah Rifda, Jiang Jizhou, Zou Jing, Xiang Kun, Ma Huijuan, Arramel. Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties, Carbon Letters, 33 ( 2023) 1321-1331. http://doi.org/10.1007/s42823-022-00380-4.
[240]
Bai Saishuai, Yang Meiqing, Jiang Jizhou, He Xiaomiao, Zou Jing, Xiong Zhiguo, Liao Guodong, Liu Song.Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction, npj 2D Materials and Applications, 5 ( 2021) 78. http://doi.org/10.1038/s41699-021-00259-4.
[241]
Peng Pan, Zhong Yifan, Zhou Cong, Tao Yongsheng, Li Dandan, Lu Qingquan. Unlocking the nucleophilicity of strong alkyl C-H bonds via Cu/Cr catalysis, ACS Central Science, 9 ( 2023) 756-762. http://doi.org/10.1021/acscentsci.2c01389.
[242]
Wang Xue, Jin Xueyang, Xie Zhiyu, Zhang Hongyang, Liu Tiantian, Zheng Hongbo, Luan Xiaoyi, Sun Yan, Fang Wenjie, Chang Wenqiang, Lou Hongxiang. Benzamidine conjugation converts expelled potential active agents into antifungals against drug-resistant fungi, Journal of Medicinal Chemistry, 66 ( 2023) 13684-13704. http://doi.org/10.1021/acs.jmedchem.3c01068.
[243]
Wang Xue, Jin Xueyang, Zhao Fabao, Xu Zejun, Tan Wenzhuo, Zhang Jiaozhen, Xu Yuliang, Luan Xiaoyi, Fang Min, Xie Zhiyu, Chang Wenqiang, Lou Hongxiang. Structure-based optimization of novel sterol 24-C-methyltransferase inhibitors for the treatment of candida albicans infections, Journal of Medicinal Chemistry, 67 ( 2024) 9318-9341. http://doi.org/10.1021/acs.jmedchem.4c00470.
[244]
He Wei-Miao, Hu Jia-Hua, Cui Yu-Jia, Li Jing, Si Yu-Bing, Wang Shuai-Bo, Zhao Yu-Jing, Zhou Zhan, Ma Lu-Fang, Zang Shuang-Quan. Filling the gaps in icosahedral superatomic metal clusters, National Science Review, 11 ( 2024) nwae174. http://doi.org/10.1093/nsr/nwae174.
[245]
Liu Chunhui, Han Peilin, Hou Xiaoxiao, Ge Suxiang, Wei Donghui. A general mechanistic map of organocatalytic hydroboration of alkynes: polarity controlled switchable selective pathways, Organic Chemistry Frontiers, 11 ( 2024) 3952-3961. http://doi.org/10.1039/D4QO00702F.
[246]
Wu Yuanqi, Ao Yuhui, Li Zhiming, Liu Chunhui, Zhao Jinbo, Gao Wenyu, Li Xuemeng, Wang Hui, Liu Yongsheng, Liu Yu. Modulation of metal species as control point for Ni-catalyzed stereodivergent semihydrogenation of alkynes with water, Nature Communications, 14 ( 2023) 1655. http://doi.org/10.1038/s41467-023-37022-w.
[247]
Deng Shicheng, Wang Songfan, Wang Yuanyuan, Xiao Qian, Meng Yuena, Kou Dongxing, Zhou Wenhui, Zhou Zhengji, Zheng Zhi, Wu Sixin. Impact of oxygen incorporation on interface optimization and defect suppression for efficiency enhancement in Cu2ZnSn(S, Se)4 solar cells, Journal of Energy Chemistry, 95 ( 2024) 77-85. https://doi.org/10.1016/j.jechem.2024.03.026.
[248]
Hui Yao, Liu Rukuan, Gong Yiming, Lan Jingwen, Chen Youhui, Wu Lijun, Xu Airong. Real case: A robust hydrogel strain sensor lifts up 80 kg of a boy volunteer, Sensors and Actuators B: Chemical, 419 ( 2024) 136346. https://doi.org/10.1016/j.snb.2024.136346.
[249]
Xu Silin, Yan Kai-Cheng, Xu Zhi-Hong, Wang Yuan, D Tony, James. Fluorescent probes for targeting the Golgi apparatus: design strategies and applications, Chemical Society Reviews, 53 ( 2024) 7590-7631. http://doi.org/10.1039/D3CS00171G.
[250]
Tian Yu-Man, Wu Wei-Na, Zhao Xiao-Lei, Wang Yuan, Fan Yun-Chang, Xu Zhi-Hong. Dual fluorescence and electrochemical detection of carbon monoxide based on a ferrocene-chalcone platform, Sensors and Actuators B: Chemical, 419 ( 2024) 136440. https://doi.org/10.1016/j.snb.2024.136440.
[251]
Gong Jiawen, Liu Quan, Cai Linlin, Yang Qi, Tong Yuping, Chen Xi, Kotha Sumasri, Mao Xiaobo, He Weiwei. Multimechanism collaborative superior antioxidant CDzymes to alleviate salt stress-induced oxidative damage in plant growth, ACS Sustainable Chemistry & Engineering, 11 ( 2023) 4237-4247. http://doi.org/10.1021/acssuschemeng.2c07371.
[252]
Geng H., Li Z., Liu Q., Yang Q., Jia H., Chen Q., Zhou A., He W.. Boosting the peroxidase-like activity of Pt nanozymes by a synergistic effect of Ti(3)C(2) nanosheets for dual mechanism detectionDalton transactions (Cambridge, England : 2003), 51 ( 2022) 11693-11702. http://doi.org/10.1039/d2dt01696f.
[253]
Jia Huimin, Gong Jiawen, Hu Zheyuan, Wen Tao, Li Caixia, Chen Yuyang, Huang Jihong, He Weiwei. Antioxidant carbon dots nanozymes alleviate stress-induced depression by modulating gut microbiota, Langmuir, 40 ( 2024) 19739-19750. http://doi.org/10.1021/acs.langmuir.4c02481.
[254]
Zhang Ziyi, Liu Dan, Zhang Xiaoshuo, Luo Xueli, Lin Wanmei, Li Zhonghong, Huang Jihong. Silver nanoparticles deposited carbon microspheres nanozyme with enhanced peroxidase-like catalysis for colorimetric detection of Hg2+ in seafood, Microchimica Acta, 190 ( 2023) 340. http://doi.org/10.1007/s00604-023-05921-w.
[255]
Guo Weiyun, Luo Linpin, Nian Ying, Wang Jianlong, Huang Jihong. pH-responsive dual-enzyme mimics based on hollow metal organic framework-derivatives β-Co(OH)2 for multiple colorimetric assays, Microchimica Acta, 190 ( 2023) 240. http://doi.org/10.1007/s00604-023-05816-w.

RIGHTS & PERMISSIONS

© 2025 This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(5966 KB)

Accesses

Citation

Detail

Sections
Recommended

/