Photocatalytic H2O2 production over Ti(HPO4)2 S-scheme heterojunction through push-pull electronic effects enhance the oxygen reduction

Shanyue He, Xin Zhang, Mei Chen, Hongquan Jiang, Yang Qu, Yanduo Liu, Jizhou Jiang

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250203.

PDF(19142 KB)
PDF(19142 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250203. DOI: 10.63823/20250203
Original article

Photocatalytic H2O2 production over Ti(HPO4)2 S-scheme heterojunction through push-pull electronic effects enhance the oxygen reduction

Author information +
History +

Abstract

This study focuses on enhancing the photocatalytic performance of Ti(HPO4)2 for H2O2 synthesis. Ti(HPO4)2, an intercalated structure photocatalyst with suitable band gap energy, has great potential in photocatalytic applications. However, its performance in H2O2 photosynthesis needs improvement in oxygen reduction kinetics and electron lifetime. We employed oxygen vacancy engineering to modulate the local oxygen environment of Ti(HPO4)2. This process reconstructs the Ti3+-Ov-P structures by leveraging push-pull electronic effects to increase the electron density at Ti4+ sites, thereby enhancing O2 adsorption and activation. Moreover, we constructed an S-scheme heterojunction using WO3 as a complementary oxidative cocatalyst. This heterojunction effectively suppressed carrier recombination and preserved the intrinsic redox abilities of each component. The optimized WO3/TPOv showed remarkable performance in a pure H2O/O2 system without sacrificial agents. It exhibited a 15-fold activity enhancement over pristine TPO and achieved an SCC efficiency of 0.75%. Our work offers a novel strategy of defect and heterojunction engineering for optimizing carrier lifetime and surface reactivity in photocatalytic systems.

Key words

Ti(HPO4)2 / push-pull electronic effects / photocatalytic H2O2 production / S-scheme heterojunction

Cite this article

Download Citations
Shanyue He , Xin Zhang , Mei Chen , et al . Photocatalytic H2O2 production over Ti(HPO4)2 S-scheme heterojunction through push-pull electronic effects enhance the oxygen reduction[J]. Composite Functional Materials. 2025, 1(2): 20250203 https://doi.org/10.63823/20250203

References

[1]
Yang Tao, Kong Fantao, Chen Yue, Kong Aiguo, Cui Xiangzhi, Shi Jianlin. Paired photoproduction of H2O2 and 3, 4-dihydroisoquinoline over covalent pyrene-(thio) urea frameworks with electron push-pull effect. Angewandte Chemie International Edition, 2025, 137, e202424110. https://doi.org/10.1002/anie.202424110
[2]
Wang Qi, Ren Liping, Zhang Jie, Chen Xin, Chen Chunying, Zhang Fei, Wang Shuai, Chen Jie,Wei Jinjia. Recent progress on the catalysts and device designs for (photo)electrochemical on-site H2O2 production. Advanced Energy Materials, 2023, 13, 2301543. https://doi.org/10.1002/aenm.202301543
[3]
Xu Yaning, Ai Shiyan, Wu Tiantian, Zhou Chengxu, Huang Qing, Li Baiyan, Tian Dan, Bu Xianhe. Bioinspired photo-thermal catalytic system using covalent organic framework-based aerogel for synchronous seawater desalination and H2O2production. Angewandte Chemie International Edition, 2025, 137, e202421990. https://doi.org/10.1002/anie.202421990
[4]
Wang Zhenguang, Liu Shuling, Liu Yanyan, Wei Xinao, Liang Ning, Sang Zenong, Jiang Jianchun, Li Baojun. Challenges and prospects of catalyst design and environmental applications for on-site hydrogen peroxide production via diverse (photo)electrochemical reaction pathways. Small, 2025, 21, 2410612. https://doi.org/10.1002/smll.202410612
[5]
Holad Yaovi, Ghosh Srabanti, W Teko, Napporn. Best practices for hydrogen peroxide (photo) electrosynthesis. Nature Sustainability, 2024, 7, 1085-1087. https://doi.org/10.1038/s41893-024-01394-8
[6]
Dimitrios K.Perivoliotis, Stangel Christina, Sato Yuta, Suenaga Kazu, Tagmatarchis Nikos. Photo/Electrocatalytic hydrogen peroxide production by manganese and iron porphyrin/molybdenum disulfide nano ensembles. Small, 2022, 18, 2203032. https://doi.org/10.1002/smll.202203032
[7]
Li Yang, Jia Ran, Lin Huiming, Sun Xilin, Qu Fengyu. Synthesis of MoSe2/CoSe2 nanosheets for NIR-enhanced chemodynamic therapy via synergistic in-situ H2O2 production and activation. Advanced Functional Materials, 2020, 31, 2008420. https://doi.org/10.1002/adfm.202008420
[8]
Luo Xiaobo, Zhou Shiyuan, Zhou Sheng, Zhou Xinyu, Huang Jia, Liu Yingjie, Wang Danfeng, Liu Guangfeng, Gu Peiyang. Functionalized modification of conjugated porous polymers for full reaction photosynthesis of H2O2. Advanced Functional Materials, 2025, 35, 2415244. https://doi.org/10.1002/adfm.202415244
[9]
Ou Yining, Wu Jiewei, R James, Meyer, Foston Marcus, D John Fortner, Li Wenlu, of Photoenhanced oxidation. nC60 in water: exploring H2O2 and hydroxyl radical based reactions. Chemical Engineering Journal, 2019, 360, 665-672. https://doi.org/10.1016/j.cej.2018.12.035
[10]
Qu Songying, Wu Hao, Ng Yun Hau. Clean production of hydrogen peroxide: a heterogeneous solar-driven redox process. Advanced Energy Materials, 2023, 13, 2370149. https://doi.org/10.1002/aenm.202301047
[11]
Xie Jingxin, Zhong Lijie, Yang Xin, He Dequan, Lin Kanglong, Chen Xiaoxia, Wang Huan, Gan Shiyu, Niu Li. Phosphorous and selenium tuning Co-based non-precious catalysts for electrosynthesis of H2O2 in acidic media. Chinese Chemical Letters, 2024, 35, 108472. https://doi.org/10.1016/j.cclet.2023.108472
[12]
Jiang Jizhou, Zhang Yanghanbin, Suna Wei, Peng Jiahe, Shi Weilong, Quc Yang, Liu Enzhou, Arramele, Jin Zhiliang. A review of updated red phosphorus-based photocatalysts. Composite Functional Materials, 2025, 1, 20250101. https://doi.org/10.63823/20250101
[13]
Huang Donghai, Wu Tengfei, Xie Daoyue, Che Huinan, Ao Yanhui. Strategies on enhancing piezocatalysis performance of ZnO-based catalysts for aquatic pollutants degradation: A review. Composite Functional Materials, 2025, 1, 20250104. https://doi.org/10.63823/20250104
[14]
Xiang Haiyan, E Jan, Lopez, Hu Travis, Cheng Jiayuan, Jiang Jizhou, Li Huimin, Liu Tang, Liu Song. Recent advances and applications of on-chip micro-/nanodevices for energy conversion and storage. Composite Functional Materials, 2025, 1, 20250102. https://doi.org/10.63823/20250102
[15]
Hu Zhenyu, Yang Zhenchun, Zeng Shiqi, Wang Kun, Li Lina, Hu Chun, Zhao Yubao. Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35, 109526. https://doi.org/10.1016/j.cclet.2024.109526
[16]
Huang Aoxue, S Roxanna Delima, Kim Yongwook, W. Lees Eric, G. L. Fraser, Parlane, J David, Dvorak, B Michael, Rooney, P Ryan, Jansonius, G. Fink Arthur, Zhang Zishuai, P Curtis, Berlinguette. Direct H2O2 synthesis, without H2 gas. Journal of the American Chemical Society, 2022, 144, 32, 14548-14554. https://doi.org/10.1021/jacs.2c03158
[17]
Ogo Seiji, Yatabe Takeshi, Tome Tamon, Takenaka Riko, Shiota Yoshihito, Kato Kenji. Safe, One-Pot, Homogeneous Direct Synthesis of H2O2. Journal of the American Chemical Society, 2023, 145, 8, 4384-4388. https://doi.org/10.1021/jacs.2c13149
[18]
Xu Xiang, Zhao Yuying, Yuan Qixin, Wu Yuhan, He Jiawei, Fan Mengmeng. Porous heterostructure of h-BN/carbon as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Letters, 2024, 34, 1629-1637. https://doi.org/10.1007/s42823-024-00718-0
[19]
Prasad K. Sudhakara, Naveen M. H., Manisha H., Suriani A. B., Babu T. G. Satheesh. Yoon-Bo Shim. Dual heteroatoms doped nanocarbons: electrocatalysts for hydrogen peroxide synthesis. Carbon Letters, 2024, 34, 1165-1171. https://doi.org/10.1007/s42823-023-00679-w
[20]
Chen Wei, Lin Shu-Zhen, Song Zhenjun, Huang Guobo, Zhang Min. Construction of S-scheme UiO-66-NH2/Zn0. 4Cd0. 6S hybrid architectures with strong interfacial interactions triggering efficient photocatalytic H2O2 production, nitrogen fixation, and water splitting. Journal of Materials Science & Technology, 2025, 232, 246-256. https://doi.org/10.1016/j.jmst.2024.12.092
[21]
Zhao Yanyan, Zhang Yong, Wang Libo, Ai Chenbin, Zhang Jianjun. Efficient H2O2 production coupling Rhodamine B degradation over covalent organic framework/g-C3N4 with S-scheme charge separation mechanism and fully hole-electron utilization ability. Journal of Materials Science & Technology, 2025, 229, 213-222. https://doi.org/10.1016/j.jmst.2024.12.040
[22]
Sun Fanglong, Luo Yadan, Kuang Shaoping, Zhou Min, Ho Wing-Kei, Tang Hua. Ultraviolet-visible-near-infrared light responsive inorganic/organic S-scheme heterojunctions for efficient H2O2 production. Journal of Materials Science & Technology, 2025, 229, 287-295. https://doi.org/10.1016/j.jmst.2024.12.060
[23]
Liu Yanduo, Sun Ning, Chen Shuangying, Yan Rui, Li Peng, Qu Yang, Qu Yichun, Jing Liqiang. Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2, 4-dichlorophenol. Nano Research, 2018, 11, 1612-1624. https://doi.org/10.1007/s12274-017-1776-z
[24]
Liu Yanduo, Zhang Xinjia, Bian Ji, Sun Jiawen, Li Zhijun, Khan Imran, Qu Yang, Li Zhibin, Jiang Zishi, Jing Liqiang. Promoted oxygen activation of layered micro-mesoporous structured titanium phosphate nanoplates by coupling nano-sized δ-MnO2 with surface pits for efficient photocatalytic oxidation of CO. Applied Catalysis B: Environment and Energy, 2019, 254, 260-269. https://doi.org/10.1016/j.apcatb. 2019.05.004
[25]
Zhang Xinjia, Liu Yanduo, Chen Liqiang, Li Zhijun, Qu Yang, Wu Wei, Jing Liqiang. Porous two-dimension MnO2-C3N4/titanium phosphate nanocomposites as efficient photocatalsyts for CO oxidation and mechanisms. Applied Catalysis B: Environment and Energy, 2021, 282, 119563. https://doi.org/10.1016/j.apcatb.2020.119563
[26]
Zhang Xinjia, Liu Yanduo, Chen Liqiang, Li Zhijun, Wu Wei, Bian Ji, Jing Liqiang. Interface modulation of FePc/Porous Ti(HPO4)2 Z-Scheme heterojunctions with ultrafine Ag for efficiently photocatalytic CO oxidation. Small Structures, 2022, 3, 2200011. https://doi.org/10.1002/sstr.202200011
[27]
Liu Yanduo, Li Xiyu, Karadas Ferdi, Gao Chao, Xiong Yujie. Synergizing multiple active sites for boosting activity and inhibiting overoxidation in photocatalytic methane valorization. ACS Materials Letters, 2025, 7, 1144-1151. https://doi.org/10.1021/acsmaterialslett.5c00088
[28]
Lan Wei, Wei Banglu, Jin Yongming, Xu Shenglei, Zhou Huixin, Wu Yiran, Liu Qiu, Chen Peng, Wang Junkai, Zhao Xiaoyu, Meng Hong, Liu Lang, Wang Duozhi, Huang Haibao, Wei Yen, Zhu Quan, Yu Yuming. Efficient photocatalytic synthesis of hydrogen peroxide facilitated by triptycene-based 3D covalent organic frameworks. Small, 2025, 21, 2501327. https://doi.org/10.1002/smll.202501327
[29]
Sheng Bo, Xie Yangen, Zhao Qi, Sheng Hua, Zhao Jincai. Proton reservoirs in polymer photocatalysts for superior H2O2 photosynthesis. Energy & Environmental Science, 2023, 16, 4612-4619. https://doi.org/10.1039/d3ee02200e
[30]
Ma Jin, Peng Xiaoxiao, Zhou Zhixin, Shen Yanfei, Zhang Yuanjian. Molecular engineering of carbon nitrides for overall photosynthesis of H2O2. Chinese Chemical Letters, 2023, 34, 108784. https://doi.org/10.1016/j.cclet.2023.108784
[31]
Zhu Qiong, Su Jingjing, Lin Guoan, Li Guisheng, Zhuo Zhiwen, Wang Weiyi, Li Jialin, Xu Xiaoxiang. Surface indium vacancies promote photocatalytic H2O2 production over In2S3. Nature Communications, 2025, 16, 10501. https://doi.org/10.1038/s41467-025-65538-w
[32]
Jiang Hongquan, Liu Yanduo, Zang Shuying, Li Jingshen, Wang Haiyan. Microwave-assisted hydrothermal synthesis of Nd, N, and P tri-doped TiO2 from TiCl4 hydrolysis and synergetic mechanism for enhanced photoactivity under simulated sunlight irradiation. Materials Science in Semiconductor Processing, 2015, 40, 822-831. https://doi.org/10.1016/j.mssp.2015.07.069
[33]
Jiang Hongquan, Liu Yanduo, Li Jingshen, Wang Haiyan. Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave‑hydrothermal process. Journal of Rare Earths, 2016, 34, 604-613. https://doi.org/10.1016/S1002-0721(16) 60068-6
[34]
Morra Elena, Giamello Elio, Antinucci Giuseppe, D'Amore Maddalena, Busico Vincenzo, Chiesa Mario. Probing the coordinative unsaturation and local environment of Ti3+ sites in an activated High-Yield Ziegler-Natta catalyst. Angewandte Chemie International Edition,Sabine Van Doorslaer, 2015, 54, 4857-4860. https://doi.org/10.1002/anie.201412052
[35]
Feng Ningdong, Lin Huiwen, Song Hui, Yang Longxiao, Tang Daiming, Deng Feng, Ye Jinhua. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nature Communications, 2021, 21, 4652. https://doi.org/10.1038/s41467-021-24912-0
[36]
Liu Yanduo, Li Mengwei, Guo Jianing, Jin Ge, Yin Yue, Cui Yu, Sun Tong. Na-Ru bimetallic functional sites promote photo-driven CO2 directed conversion into CH4. Journal of Colloid and Interface Science, 2024, 667, 22-31, https://doi.org/10.1016/j.jcis.2024.04.068
[37]
Liu Yanduo, Li Jiadong, Dong Xianglan, Dai Lina, Zhang Enqi. Au depositing and Mg doping synergistically regulates an In2O3 photocatalyst for promoting CO2 reduction and CH4 exclusive generation. Inorganic Chemistry Frontiers, 2024, 11, 5310-5318. https://doi.org/10.1039/d4qi01381f
[38]
Huang Yue, Zhang Jinfeng, Ruzimuradov Olim, Mamatkulov Shavkat, Dai Kai, Low Jingxiang. Selective oxygen vacancy engineering for shrinking the potential barrier of S-scheme heterojunction toward highly efficient photocatalytic CO2 conversion. Composite Functional Materials, 2025, 1, 20250103. https://doi.org/10.63823/20250103
[39]
Guo Xin, Liu Yanduo, Yang Yang, Mu Zhiyuan, Wang Ying, Zhang Shuai, Wang Shuai, Hu Yufeng, Liu Zhichang. Effective visible-light excited charge separation in all-solid-state Ag bridged BiVO4/ZnIn2S4 core-shell structure Z-Scheme nanocomposites for boosting photocatalytic organics degradation. Journal of Alloys and Compounds, 2021, 887, 161389. https://doi.org/10.1016/j.jallcom.2021.161389
[40]
Li Shijie, Li Rui, Dong Kexin, Liu Yanping, Yu Xin, Li Wenyao, Liu Tong, Zhao Zaiwang, Zhang Mingyi, Zhang Bin, Chen Xiaobo. Self-floating Bi4O5Br2/P-doped C3N4/carbon fiber cloth with S-scheme heterostructure for boosted photocatalytic removal of emerging organic contaminants. Chinese Journal of Catalysis, 2025, 76, 37-49. https://doi.org/10.1016/S1872-2067(25)64780-2
[41]
Guo Xin, Sun Xiaojie, Wang Zhiyuan, Zhang Jiahui, Liu Zhichang, Hu Yufeng, Liu Yanduo. In-situ growth of Z-Scheme Ag/PPy/BiVO4 core-shell structure for efficient CO2 photoreduction into hydrocarbon fuels. Fuel, 2023, 343, 128004. https://doi.org/10.1016/j.fuel.2023.128004
[42]
Li Xibao, Wan Yiyang, Deng Fang, Zhou Yingtang, Chen Pinghua, Dong Fan, Jiang Jizhou. Advances in Z-scheme and S-scheme heterojunctions for photocatalytic and photoelectrocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36, 111418. https://doi.org/10.1016/j.cclet. 2025.111418
[43]
Dai Lina, Li Qiang, Dong Xianglan, Zhang Enqi, Hu Yufeng, Guo Xin, Liu Yanduo. Smooth charge transfer at the Ag2MoO4/Mn-Fe PBAs S-Scheme interface for photo-driven CO2 reduction. Fuel, 2025, 395, 135210. https://doi.org/10.1016/j.fuel.2025.135210
[44]
Ding Lu, Lei Minjun, Wang Tian, Wang Jing, Jin Zhiliang. Graphdiyne coordinated CoMo-MOF formed S-scheme heterojunction boosting photocatalytic hydrogen production. Carbon Letters, 2024, 34, 2099-2112. https://doi.org/10.1007/s42823-024-00743-z
[45]
Dai Lina, Dong Xianglan, Zhang Enqi, Liu Yanduo. High-energy-level electron injection in ZnWO4/ZnO photocatalysts for efficient methane-to-methanol conversion. Fuel, 2025, 396, 135297. https://doi.org/10.1016/j.fuel.2025.135297
[46]
Liu Yanduo, Chen Yihong, Jiang Wenbin, Kong Tingting, H C Camargo Pedro, Gao Chao, Xiong Yujie. Highly efficient and selective photocatalytic nonoxidative coupling of methane to ethylene over Pd-Zn synergistic catalytic sites. Research, 2022, 9831340. https://doi.org/10.34133/2022/9831340
[47]
Li Bin, Sun Liqun, Bian Ji, Sun Ning, Sun Jiawen, Chen Liqiang, Li Zhijun, Jing Liqiang. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Applied Catalysis B: Environment and Energy, 2020, 270, 118849. https://doi.org/10.1016/j.apcatb.2020.118849
[48]
Li Jiadong, Zhang Xuliang, Raziq Fazal, Wang Jinshuang, Liu Chong, Liu Yanduo, Sun Jiawen, Yan Rui, Qu Binhong, Qin Chuanli, Jing Liqiang. Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping h+ with halogen-induced surface polarization and 2, 4-dichlorophenol decomposition mechanism. Applied Catalysis B: Environment and Energy, 2017, 218, 60-67. https://doi.org/10.1016/j.apcatb.2017.06.038
[49]
Jin Cheng, Shen Hao, Li Jinhe, Guo Xinge, Rao Shaosheng, Yang Wenqiang, Liu Qinqin, Sun Zhongti, Yang Juan. Isolated Ni atoms for enhanced photocatalytic H2O2 performance with 1. 05% solar-to-chemical conversion efficiency in pure water. Nano Letters, 2024, 24, 14484-14492. https://doi.org/10.1021/acs.nanolett.4c04573
[50]
Hou Huilin, Zeng Xiangkang, Zhang Xiwang. Production of hydrogen peroxide by photocatalytic processes. Angewandte Chemie International Edition, 2019, 59, 17356-17376. https://doi.org/10.1002/anie.201911609
[51]
Zhao Yanyan, Zhang Shumin, Wu Zhen, Zhu Bicheng, Sun Guotai, Zhang Jianjun. Regulation of d-band center of TiO2 through fluoride doping for enhancing photocatalytic H2O2 production activity. Chinese Journal of Catalysis, 2024, 60, 219-230. https://doi.org/10.1016/S1872-2067(23)64645-5
[52]
Zhang Yuanzheng, Liang Chao, Feng Haopeng, Liu Wei. Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chemical Engineering Journal, 2022, 446, 137379. https://doi.org/10.1016/j.cej.2022.137379
[53]
Zhang Yunchao, Pan Jinkang, Ni Xiang, Mo Feiqi, Xu Yuanguo, Dong Pengyu. Revealing the dynamics of charge carriers in organic/inorganic hybrid FS-COF/WO3 S-scheme heterojunction for boosted photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2025, 74, 250-263. https://doi.org/10.1016/S1872-2067(25)64664-X
[54]
Li Shijie, Li Xinyu, Liu Yanping, Zhang Peng, Zhang Junlei, Zhang Bin. Interfacial engineering of a plasmonic Ag/Ag2CO3/C3N5 S-scheme heterojunction for high-performance photocatalytic degradation of antibiotics. Chinese Journal of Catalysis, 2025, 72, 130-142. https://doi.org/10.1016/S1872-2067(25)64652-3
[55]
Yi Futao, Liu Ying, Chen Yao, Zhu Jiahao, He Quanguo, Yang Chun, Ma Dongge, Liu Jun. Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation. Chinese Chemical Letters, 2025, 36, 110544. https://doi.org/10.1016/j.cclet.2024.110544
[56]
Dai Lina, Wang He, Cui Liru, Liu Yanduo. Built-in electric field driven rapid charge transfer at the Ag3PO4/Cu-Co PBAs S-Scheme interface for CO2 reduction into chemical energy. Renewable Energy, 2025, 247, 123093. https://doi.org/10.1016/j.renene.2025.123093
[57]
Zhang Liuyang, Zhang Jianjun, Yu Huogen, Yu Jiaguo. Emerging S-Scheme photocatalyst. Advanced Materials, 2022, 34, 2107668. https://doi.org/10.1002/adma.202107668
[58]
Liu Xiaodong, Li Yuanfei, Wang Huanli, Liu Jiayuan, Fu Jingchuan, Liu Jia, Li Shijie. In situ construction of N-rich carbon nitride (C3N5)/silver phosphate (Ag3PO4) S-scheme heterojunctions for the efficient photocatalytic removal of levofloxacin antibiotic and RhB. Carbon Letters, 2024, 34, 1995-2011. https://doi.org/10.1007/s42823-024-00741-1
[59]
Ruan Xiaowen, Huang Chengxiang, Cheng Hui, Zhang Zhiquan, Cui Yi, Li Zhiyun, Xie Tengfeng, Ba Kaikai, Zhang Haiyan, Zhang Lei, Zhao Xiao, Leng Jing, Jin Shengye, Zhang Wei, Zheng Weitao, Sai Kishore Ravi, Zhifeng Jiang, Xiaoqiang Cui, Jiaguo Yu. A twin S-Scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Advanced Materials, 2023, 35, 2209141. https://doi.org/10.1002/adma.202209141
[60]
Cheng Chang, Zhang Jianjun, Zhu Bicheng, Liang Guijie, Zhang Liuyang, Yu Jiaguo. Verifying the charge-transfer mechanism in S-Scheme heterojunctions using femtosecond transient absorption spectroscopy. Angewandte Chemie International Edition, 2023, 62, e202218688. https://doi.org/10.1002/anie.202218688
[61]
Yang Yi, Zhou Xin, Gu Miaoli, Cheng Bei, Wu Zhen, Zhang Jianjun. Investigating the charge transfer mechanism of ZnSe QD/COF S-Scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy. Chinese Journal of Catalysis, 2024, 63, 258-269. https://doi.org/10.1016/s1872-2067(24)60069-0
[62]
Li Zhi, Li Ru, Liu Rui, Zhang Wenjie, Wan Yong, Sun Yuze, Yang Lei, Long Yunze. A beaded g-C3N4/CoFe2O4 nanofibers for efficient adsorbing and catalytical degrading multiple pollutants. Carbon Letters, 2025, 35, 1187-1203. https://doi.org/10.1007/s42823-025-00863-0
[63]
Liu Maosong, Lei Zhihao, Lv Xianhe, Song Xiaoxue, Zhang Long, Li Shun, Sun Tao, Li Li, Hui Jianing, Zhang Wenyong, Yee Wong Siew, Li Xu, Xia Guangjie, Zhang Jianming, Sun Shuhui. Enhancing the ORR durability of single atomic Fe-N4 active sites with implanted SiO2 nanoparticles as radical and H2O2 inhibitors. Nature Communications, 2025, 16, 10178. https://doi.org/10.1038/s41467-025-65194-0
[64]
Xu Feiyan, Zhao Feifan, Deng Xianyu, Zhang Jinfeng, Zhang Jianjun, Ai Chenbin, Yu Jiaguo, García Hermenegildo. Integrating S-scheme photocatalysis with tandem carbonylation: A green and scalable strategy for CO2 valorization. Nature Communications, 2025, 16, 6882. https://doi.org/10.1038/s41467-025-60961-5
[65]
Gao Tengyuan, Shi Dan, Liu Xiufan, Wu Xinhe, Wang Guohong. Investigating the charge transfer mechanism of 1D/2D ZnO/SnIn4S8 S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Materials Science & Technology, 2026, 251, 241-251. https://doi.org/10.1016/j.jmst.2025.07.006
[66]
Han Qing, Wu Chongbei, Jiao Haimiao, Xu Ruoyu, Wang Yuze, Xie Jijia, Guo Qian, Tang Junwang. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Advanced Materials, 2021, 33, 2008180. https://doi.org/10.1002/adma.202008180
[67]
M. Comer Benjamin, J. Medford Andrew. Analysis of photocatalytic nitrogen fixation on rutile TiO2(110). ACS Sustainable Chemistry & Engineering, 2018, 6, 4648-4660, https://doi.org/10.1021/acssuschemeng.7b03652
[68]
Chinthala Praveen Kumar. Neeruganti Obularajugari Gopal, Ting Chung Wang, Mingshow Wong, Shyue Chu Ke. EPR investigation of TiO2 nanoparticles with temperature-dependent properties. The Journal of Physical Chemistry B, 2006, 110, 5223-5229. https://doi.org/10.1021/jp057053t
[69]
Mohajernia Shiva, Andryskova Pavlina, Zoppellaro Giorgio, Hejazi Seyedsina, Kment Stepan, Zboril Radek, Schmidt Jochen, Schmuki Patrik. Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. Journal of Materials Chemistry A, 2020, 8, 1432-1442. https://doi.org/10.1039/C9TA10855F
[70]
Yin Yue, Dong Xianglan, Dai Lina, Zhang Enqi, Liu Yanduo. Hydroxyl and amino co-modified imidazole based ionic liquid functionalized TS-1 molecular sieve for efficient CO2 capture. Separation and Purification Technology, 2025, 358, 130393. https://doi.org/10.1016/j.seppur.2024.130393
[71]
Liu Qinghua, Guo Xin, Hu Yufeng, Li Qiang, Jiao Jianhao, Meng Zitao, An Yongqi, Tang Xuqi, Yuan Maojie, Wang Bingcan, Qin Yucai, Liu Yanduo. Functional ionic liquid anchored TS-1 molecular sieve with multiple adsorption sites for efficient capture and separation of CO2 in flue gas systems. Separation and Purification Technology, 2025, 360, 130920. https://doi.org/10.1016/j.seppur.2024.130920
[72]
Deng Danni, Wang Jinxian, Wang Meng, Wang Yuchao, Jiang Jiabi, Chen Yingbi, Bai Yu, Wu Qiumei, Lei Yongpeng. Accelerated O2 adsorption and stabilized *OOH for electrocatalytic H2O2 production. Journal of Materials Science & Technology, 2025, 227, 76-81. https://doi.org/10.1016/j.jmst.2024.12.017
[73]
Dai Lina, Wang He, Liu Yanduo, Cui Liru. Ag-Mg tandem sites co-modified ultrathin ZnO achieving adsorption and activation synergistic effects for light-driven methane selective conversion. Chemical Engineering Journal, 2025, 512, 162380. https://doi.org/10.1016/j.cej.2025.162380
[74]
Dong Xianglan, Wang He, Liu Yanduo, Cui Liru. Mg-Pd coexisted adsorption and activation tandem sites for methane photocoupling into ethane by oxygen medium. Chemical Engineering Journal, 2025, 515, 163829. https://doi.org/10.1016/j.cej.2025.163829
[75]
Rouillé G., Millot G., Saint-Loup R., Berger H.. High-resolution stimulated Raman spectroscopy of O2. Journal of Molecular Spectroscopy, 1992, 154, 372-382. https://doi.org/10.1016/0022-2852(92)90215-A
[76]
Xiao Jun, Yu Shenjie, Wang Haijian, Pan Duo, Li Tianmi, Yang Juan, Wen Zhenhai, Ci Suqin. Enhanced efficiency in organic wastewater treatment by synergetic cathodic produced H2O2and anodic oxidation. Renewable Energy, 2026, 256, 124321. https://doi.org/10.1016/j.renene.2025.124321
[77]
H Phebe, G.H. Dennis, Hetterscheid. Selective electrochemical H2O2 production by a molecular copper catalyst: A crucial relation between reaction rate and mass transport. Chem Catalysis, 2024, 4, 101069. https://doi.org/10.1016/j.checat.2024.101069
[78]
Zhao Erzhuo, Xue Wendan, Qin Shuhan, Guo Yang, Xin Xin, Wang Huijiao, Zhang Yinqiao, Zuo Sijin. A review of H2O2 electrosynthesis by 2-electron ORR and 2-electron WOR: From catalysts to electrochemical cells. Coordination Chemistry Reviews, 2025, 545, 217042. https://doi.org/10.1016/j.ccr.2025.217042
[79]
Foo Joel Jie, Ng Sue Faye, Kok Steven Hao, Zeng Xianhai, Tan Lling Lling, Ong Wee Jun. Synergistic potassium intercalation and cyano group modification on crystalline carbon nitride homojunction towards dual-functional photoredox coupling of H2O2 and benzaldehyde production. Chemical Engineering Journal, 2025, 505, 158992. https://doi.org/10.1016/j.cej.2024.158992
[80]
Gotti Guillaume, Evrard David, Gros Pierre. Simultaneous electrochemical detection of oxygen (O2) and hydrogen peroxide (H2O2) in neutral media. International Journal of Electrochemical Science, 2023, 18, 100262. https://doi.org/10.1016/j.ijoes.2023.100262
[81]
Wang Xinyao, Yang Xiaowei, Zhao Chen, Pi Yutong, Li Xiaobo, Jia Zhongfan, Zhou Si, Zhao Jijun, Wu Limin, Liu Jian. Ambient preparation of benzoxazine-based phenolic resins enables long-term sustainable photosynthesis of hydrogen peroxide. Angewandte Chemie International Edition, 2023, 62, e202302829. https://doi.org/10.1002/anie.202302829
[82]
Liu Ping, Liang Teng, Li Yutong, Zhang Ziqing, Li Zhuo, Bian Ji, Jing Liqiang. Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters. Nature Communications, 2024, 15, 9224. https://doi.org/10.1038/s41467-024-53482-0
[83]
Xu Shuaifei, Dai Huichao, Zhu Shaolong, Wu Yanchao, Sun Mingxuan, Chen Yuan, Fan Kun, Zhang Chenyang, Wang Chengliang, Hu Wenping. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. eScience, 2021, 1, 60-68. https://doi.org/10.1016/j.esci.2021.08.002
[84]
Chen Liang, Wang Lei, Wan Yangyang, Zhang Ying, Qi Zeming, Wu Xiaojun, Xu Hangxun. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: a new two-electron water oxidation pathway. Advanced Materials, 2020, 32, 1904433. https://doi.org/10.1002/adma. 201904433
[85]
Liu Youxing, Li Lu, Sang Zhiyuan, Tan Hao, Ye Na, Sun Chenglong, Sun Zongqiang, Luo Mingchuan, Guo Shaojun. Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution. Nature Synthesis, 2025, 4, 134-141. https://doi.org/10.1038/s44160-024-00644-z
[86]
Zhang Kailian, Dan Meng, Yang Jingfei, Wu Fengxiu, Wang Leigang, Tang Hua, Liu Zhaoling. Surface energy mediated sulfur vacancy of ZnIn2S4 atomic layers for photocatalytic H2O2 production. Advanced Functional Materials, 2023, 33, 2302964. https://doi.org/10.1002/adfm.202302964
[87]
Fu Fan, Liu Yongxin, Liu Mingliang, Li Zhengguang, Zhong Wanying, Li Yaqin, Li Kaixiu, Wang Jun, Huang Yongchao, Li Yiming, Liu Wei, Zhang Yi, Xiang Kaisong, Liu Hui, Wang Pingshan, Liu Die. Non-noble metal single-molecule photocatalysts for the overall photosynthesis of hydrogen peroxide. Journal of the American Chemical Society, 2025, 147, 6390-6403. https://doi.org/10.1021/jacs.4c09445
[88]
Zhang Yaning, Pan Chengsi, Bian Gaoming, Xu Jing, Dong Yuming, Zhang Ying, Lou Yang, Liu Weixu, Zhu Yongfa. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nature Energy, 2023, 8, 361-371. https://doi.org/10.1038/s41560-023-01218-7
[89]
J. Lewis Richard, Ueura Kenji, Liu Xi, Fukuta Yukimasa, E. Davies Thomas, J. Morgan David, Chen Liwei, Qi Jizhen, Singleton James, K Jennifer., Edwards, J. Freakley Simon, J. Kiely Christopher,Yamamoto Yasushi. Graham J. Hutchings. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science, 2022, 376, 615-620. https://doi.org/10.1126/science.abl4822
[90]
Liu Binyao, Du Jinyan, Ke Gaili, Jia Bi, Huang Yujie, He Huichao, Zhou Yong, Zou Zhigang, Boosting. O2 reduction and H2O dehydrogenation kinetics: surface N-Hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Advanced Functional Materials, 2022, 32, 2111125. https://doi.org/10.1002/adfm.202111125
[91]
Zhi Qianjun, Liu Wenping, Jiang Rong, Zhan Xiaoning, Jin Yucheng, Chen Xin, Yang Xiya, Wang Kang, Cao Wei, Qi Dongdong, Jiang Jianzhuang. Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2 photosynthesis. Journal of the American Chemical Society, 2022, 144, 21328-21336. https://doi.org/10.1021/jacs.2c09482

Acknowledgements

The authors acknowledge support from National Natural Science Foundation of China (Nos. U24A2071, 62004143), the Key Project of Scientific Research Plan of Hubei Provincial Department of Education (No. D20241501).

RIGHTS & PERMISSIONS

© 2025 INTERNATIONAL SCIENCE ACCELERATOR PTY LTD. This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(19142 KB)

Accesses

Citation

Detail

Sections
Recommended

/