Bronze TiO2 photocatalysis facilitates solution plasma production of H2O2

Yanhui Li, Changhua Wang, Qi Wu, Yuanyuan Li, Shuang Liang, Dexin Jin, He Ma, Xintong Zhang

Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250204.

PDF(1683 KB)
PDF(1683 KB)
Composite Functional Materials ›› 2025, Vol. 1 ›› Issue (2) : 20250204. DOI: 10.63823/20250204
Review article

Bronze TiO2 photocatalysis facilitates solution plasma production of H2O2

Author information +
History +

Abstract

Synergizing photocatalysis with external fields offers a promising strategy to surpass limitations of single catalytic systems, yet designing catalysts that works in multi-field remains challenging. In this work, we explore catalysts that improves photocatalysis in solution plasma to significantly enhance H2O2 production. We focus on bronze TiO2 and tune its crystallinity through an adjusted sodium titanate precursor route. In particular, the regular and wide tunnel structure of Na2Ti6O13 precursor results in bronze TiO2 with exceptional crystallinity. Upon introducing highly crystalline bronze TiO2 nanobelts into solution plasma, we effectively suppress the photocatalytic decomposition of H2O2 in plasma field, reducing the decomposition rate by 70% compared to commercial P25 TiO2 photocatalysts. Further carbon coating results in H2O2 concentrations up to 3.7 mmol/L, which is 1-3 orders of magnitude higher than most photocatalytic systems. Our work elucidates the potential photocatalytic effects within solution plasma and achieves synergy between photocatalysis and solution plasma.

Key words

Solution Plasma / photocatalysis / Bronze TiO2 / H2O2 production

Cite this article

Download Citations
Yanhui Li , Changhua Wang , Qi Wu , et al . Bronze TiO2 photocatalysis facilitates solution plasma production of H2O2 [J]. Composite Functional Materials. 2025, 1(2): 20250204 https://doi.org/10.63823/20250204

References

[1].
Ruotian Chen, Zefeng Ren, Yu Liang, Guanhua Zhang, Thomas Dittrich, Runze Liu, Yang Liu, Yue Zhao, Shan Pang, Hongyu An, Chenwei Ni, Panwang Zhou, Keli Han, Fengtao Fan, Can Li. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature, 2022, 610, 296-301.
[2].
Diego Mateo,Jose Luis Cerrillo, Sara Durinia, Jorge Gascon. Fundamentals and applications of photo-thermal catalysis. Chemical Society Reviews, 2021, 50, 2173-2210. https://doi.org/10.1039/D0CS00357C
[3].
Fei Yu, Changhua Wang, Yingying Li, He Ma, Rui Wang, Yichun Liu, Norihiro Suzuki, Chiaki Terashima, Bunsho Ohtani, Tsuyoshi Ochiai, Akira Fujishima, Xintong Zhang. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Advanced Science, 2020, 7, 16, 2000204. https://doi.org/10.1002/advs.202000204
[4].
Mujin Cai, Chaoran Li, Xingda An, Biqing Zhong, Yuxuan Zhou, Kun Feng, Shenghua Wang, Chengcheng Zhang, Mengqi Xiao, Zhiyi Wu, Jiari He, Chunpeng Wu, Jiahui Shen, Zhijie Zhu, Kai Feng, Jun Zhong, Le He. Supra-photothermal CO2 methanation over greenhouse-like plasmonic superstructures of ultrasmall cobalt nanoparticles. Advanced Materials, 2024, 36, 9, 2308859. https://doi.org/10.1002/adma.202308859
[5].
Huanjun Zhang, Guohua Chen, Detlef W. Bahnemann. Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry, 2009, 19, 29, 5089-5121. https://doi.org/10.1039/B821991E
[6].
Lun Pan, Shangcong Sun, Ying Chen, Peihong Wang, Jiyu Wang, Xiangwen Zhang, Ji-Jun Zou, Zhong Lin Wang. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2020, 10, 15, 2000214. https://doi.org/10.1002/aenm.202000214
[7].
Tao Lv, Jiaxuan Li, Nayab Arif, Lu Qi, Jianguo Lu, Zhizhen Ye, Yu-Jia Zeng. Polarization and external-field enhanced photocatalysis. Matter, 2022, 5, 9, 2685-2721. https://doi.org/10.1016/j.matt.2022.06.004
[8].
Leena Dharmarathne, Muthupandian Ashokkumar, Franz Grieser. Photocatalytic generation of hydrogen using sonoluminescence and sonochemiluminescence. The Journal of Physical Chemistry C, 2012, 116, 1, 1056-1060. https://doi.org/10.1021/jp209946s
[9].
Tzu-Yang Cheng, Feng-Pai Chou, Sheng-Cih Huang, Chin-Yuan Chang, Tung-Kung Wu. Electroluminescence and photocatalytic hydrogen evolution of S, N co-doped graphene oxide quantum dots. Journal of Materials Chemistry A, 2022, 10, 7, 3650-3658. https://doi.org/10.1039/D1TA09917E
[10].
Aymen Amine Assadi, Abdelkrim Bouzaza, Cedric Vallet, Dominique Wolbert. Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254, 124-132. https://doi.org/10.1016/j.cej.2014.05.101
[11].
Ramses Snoeckx, Annemie Bogaerts. Plasma technology - a novel solution for CO2 conversion? Chemical Society Reviews, 2017, 46, 19, 5805-5863. https://doi.org/10.1039/C6CS00066E
[12].
Yanmei Xing, Changhua Wang, Dashuai Li, Rui Wang, Shuang Liang, Yingying Li, Yichun Liu, Xintong Zhang. Solution plasma processing single-atom Au1 on CeO2 nanosheet for low temperature photo-enhanced Mars-van Krevelen CO oxidation. Advanced Functional Materials 2022, 32, 48, 2207694. https://doi.org/10.1002/adfm.202207694
[13].
Rui Wang, Guangshun Che, Changhua Wang, Chunyao Liu, Baoshun Liu, Bunsho Ohtani, Yichun Liu, Xintong Zhang. Alcohol plasma processed surface amorphization for photocatalysis. ACS Catalysis, 2022, 12, 19, 12206-12216. https://doi.org/10.1021/acscatal.2c03427
[14].
Yanhui Yi, Juncheng Zhou, Hongchen Guo, Jianli Zhao, Ji Su, Li Wang, Xiangsheng Wang, Weimin Gong. Safe direct synthesis of high purity H2O2 through a H2/O2 plasma reaction. Angewandte Chemie International Edition, 2013, 52, 32, 8446-8449. https://doi.org/10.1002/anie.201304134
[15].
Naoyuki Kurake, Hiromasa Tanaka, Kenji Ishikawa, Keigo Takeda, Hiroshi Hashizume, Kae Nakamura, Hiroaki Kajiyama, Takashi Kondo, Fumitaka Kikkawa, Masaaki Mizuno. Effects of •OH and •NO radicals in the aqueous phase on H2O2 and NO2- generated in plasma-activated medium. Journal of Physics D: Applied Physics, 2017, 50, 15, 155202. https://doi.org/10.1088/1361-6463/aa5f1d
[16].
Shiwei Yan, Yong Li, Xinyue Yang, Xiaohua Jia, Jingsan Xu, Haojie Song. Photocatalytic H2O2 generation reaction with a benchmark rate at air-liquid-solid joint interfaces. Advanced Materials, 2024, 36, 9, 2307967. https://doi.org/10.1002/adma.202307967
[17].
Fabio Cameli, Panagiotis Dimitrakellis, Tai-Ying Chen, Dionisios G. Vlachos. Modular plasma microreactor for intensified hydrogen peroxide production. ACS Sustainable Chemistry & Engineering, 2022, 10, 5, 1829-1838. https://doi.org/10.1021/acssuschemeng.1c06973
[18].
Qiang Chen, Junshuai Li, Qiang Chen, Kostya (Ken) Ostrikov. Recent advances towards aqueous hydrogen peroxide formation in a direct current plasma-liquid system. High Voltage, 2022, 7, 3, 405-419. https://doi.org/10.1049/hve2.12189
[19].
Qi Wu, Changhua Wang, Yingying Li, Xintong Zhang. Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface, Acta Physico-Chimica Sinica, 2025, 41, 9, 100107. https://doi.org/10.1016/j.actphy.2025.100107
[20].
Shanyue He, Xin Zhang, Mei Chen, Hongquan Jiang, Yang Qu, Yanduo Liu, Jizhou Jiang,Photocatalytic H2O2 production over Ti(HPO4)2 S-scheme heterojunction through push-pull electronic effects enhance the oxygen reduction. Composite Functional Materials, 2025, 1, 2, 20250203. https://doi.org/10.63823/20250203
[21].
Xiang Xu, Yuying Zhao, Qixin Yuan, Yuhan Wu, Jiawei He, Mengmeng Fan. Porous heterostructure of h-BN/carbon as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Letters, 2024, 34, 1629-1637. https://doi.org/10.1007/s42823-024-00718-0
[22].
Petr Lukes, Martin Clupek, Vaclav Babicky, Pavel Sunka. Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Science and Technology, 2008, 17, 2, 024012. https://doi.org/10.1088/0963-0252/17/2/024012
[23].
Yue Huang, Jinfeng Zhang, Olim Ruzimuradov, Shavkat Mamatkulov, Kai Dai, Jingxiang Low. Selective oxygen vacancy engineering for shrinking the potential barrier of S-scheme heterojunction toward highly efficient photocatalytic CO2 conversion. Composite Functional Materials. 2025, 1, 1, 20250103. https://doi.org/10.63823/20250103
[24].
Fanglong Sun, Yadan Luo, Shaoping Kuang, Min Zhou, Wing-Kei Ho, Hua Tang. Ultraviolet-visible-near-infrared light responsive inorganic/organic S-scheme heterojunctions for efficient H2O2 production. Journal of Materials Science & Technology, 2025, 229, 287-295. https://doi.org/10.1016/j.jmst.2024.12.060
[25].
Yang Yi, Zhou Xin, Gu Miaoli, Cheng Bei, Wu Zhen, Zhang Jianjun. Investigating the charge transfer mechanism of ZnSe QD/COF S-Scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy. Chinese Journal of Catalysis, 2024, 63, 258-269. https://doi.org/10.1016/s1872-2067(24)60069-0
[26].
Cong Fu, Lingfang Liu, Zhaorui Li, Yaxiong Wei, Weixin Huang, Xiaojun Zhang. Synergy of bulk defects and surface defects on TiO2 for highly efficient photocatalytic production of H2O2. The Journal of Physical Chemistry Letters, 2023, 14, 34, 7690-7696. https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01865
[27].
Xiangzhong Li, Chuncheng Chen, Jincai Zhao. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir, 2001, 17, 13, 4118-4122. https://pubs.acs.org/doi/10.1021/la010035s
[28].
Jian Zou, Jiacheng Gao, Fengyu Xie. An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. Journal of Alloys and Compounds, 2010, 497, 1-2, 420-427. https://doi.org/10.1016/j.jallcom.2010.03.093
[29].
Liming Wang, Qinggao Wang, Fengzhu Ren, Yuanxu Wang. An unexpected interaction between a H2O2 molecule and anatase TiO2 (101)surface. Applied Surface Science, 2019, 493, 926-932. https://doi.org/10.1016/j.apsusc.2019.07.032
[30].
Rui Tu, Shuying Chen, Wei Cao, Suoying Zhang, Licheng Li, Tuo Ji, Jiahua Zhu, Jun Li, Xiaohua Lu. The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2 (B)/anatase supported Pd catalyst. Catalysis Communications. 2017, 89, 69-72. https://doi.org/10.1016/j.catcom.2016.10.024
[31].
Yongzheng Shi, Ruomeng Yu, Dongzhi Yang, Yaxin Liu, Jin Qu, Bin Liu, Zhong-Zhen Yu. Na2Ti3O7 nanowires with TiO2 and N-doped carbon dual-shells as binder-free electrodes for efficient sodium storage. Electrochimica Acta, 2019, 321, 134714. https://doi.org/10.1016/j.electacta.2019.134714
[32].
B. Liu, J. E. Boercker, E. S. Aydil, Oriented single crystalline titanium dioxide nanowires. Nanotechnology 2008, 19, 50, 505604. https://doi.org/10.1088/0957-4484/19/50/505604
[33].
Dong-Seok Seo, Hwan Kim, Jong-Kook Lee. Hydrothermal synthesis of Na2Ti6O13 and TiO2 whiskers. Journal of Crystal Growth, 2005, 275, 1-2, e2371-e2376. https://doi.org/10.1016/j.jcrysgro.2004.11.340
[34].
M. Qamar, C. R. Yoon, H. J. Oh, D. H. Kim, J. H. Jho, K. S. Lee, W. J. Lee, H. G. Lee, S. J. Kim. Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology, 2006, 17, 24, 5922-5929. https://doi.org/10.1088/0957-4484/17/24/004
[35].
Lan Luo, Yichao Zhen, Yanzhong Lu, Kaiqiang Zhou, Jinxian Huang, Zhigao Huang, Sanjay Mathur, Zhensheng Hong. Structural evolution from layered Na2Ti3O7 to Na2Ti6O13 nanowires enabling a highly reversible anode for Mg-ion batteries. Nanoscale, 2020, 12, 1, 230-238. https://doi.org/10.1039/C9NR08003A
[36].
Hongwei Liu, Dongjiang Yang, Zhanfeng Zheng, Xuebin Ke, Eric Waclawik, Huaiyong Zhu, Ray L. Frost. A Raman spectroscopic and TEM study on the structural evolution of Na2Ti3O7 during the transition to Na2Ti6O13. Journal of Raman Spectroscopy, 2010, 41, 10, 1331-1337. https://doi.org/10.1002/jrs.2561
[37].
Pronay Makal, Debajyoti Das. Self-doped TiO2-B single phase, TiO2-B/anatase and TiO2-anatase/rutile heterojunctions demonstrating individual superiority in photocatalytic activity under visible and UV light. Applied Surface Science, 2018, 455, 1106-1115. https://doi.org/10.1016/j.apsusc.2018.06.055
[38].
Suzhe Liang, Xiaoyan Wang, Ruoxuan Qi, Ya-Jun Cheng, Yonggao Xia, Peter Muller-Buschbaum, Xile Hu. Bronze-phase TiO2 as anode materials in lithium and sodium-ion batteries. Advanced Functional Materials, 2022, 32, 25, 2201675. https://doi.org/10.1002/adfm.202201675
[39].
Branislav Pongrac, Milan Simek, Martin Clupek, Vaclav Babicky and Petr Lukes. Spectroscopic characteristics of Hα/OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water. Journal of Physics D: Applied Physics, 2018, 51, 12, 124001. https://doi.org/10.1088/1361-6463/aaabb1
[40].
E A H Timmermans, M J van de Sande, J J A M van der Mullen. Plasma characterization of an atmospheric microwave plasma torch using diode laser absorption studies of the argon 4s 3P2 state. Plasma Sources Science and Technology, 2003, 12, 3, 324-334. https://doi.org/10.1088/0963-0252/12/3/305
[41].
Guolei Xiang, Tianyang Li, Jing Zhuang, Xun Wang. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties, Chemical Communications, 2010, 46, 6801-6803. https://doi.org/10.1039/C0CC02327B
[42].
Changhua Wang, Xintong Zhang, Yongan Wei, Lina Kong, Feng Chang, Han Zheng, Liangzhuan Wu, Jinfang Zhi, Yichun Liu. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction, Dalton Transactions, 2015, 44, 13331-13339. https://doi.org/10.1039/C5DT01860A
[43].
Linxiang Li, Yoshihiro Abe, Kiyotada Kanagawa, Noriko Usui, Kazuhiro Imai, Tadahiko Mashino, Masataka Mochizuki, Naoki Miyata. Distinguishing the 5, 5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Analytica Chimica Act, 2004, 512, 1, 121-124. https://doi.org/10.1016/j.aca.2004.02.020
[44].
Zheling Li, Libo Deng, Ian A. Kinloch, Robert J. Young. Raman spectroscopy of carbon materials and their composites: graphene, nanotubes and fibers. Progress in Materials Science, 2023, 135, 101089. https://doi.org/10.1016/j.pmatsci.2023.101089
[45].
Shuang Liang, Qi Wu, Changhua Wang, Rui Wang, Dashuai Li, Yanmei Xing, Dexin Jin, He Ma, Yichun Liu. Sustainable H2O2 production via solution plasma catalysis. Proceedings of the National Academy of Sciences, 2024, 121, e2410504121. https://doi.org/10.1073/pnas.2410504121
[46].
Anja Allabar, Marcus Nowak, High spatial resolution analysis of H2O in silicate glass using attenuated total reflection FTIR spectroscopy coupled with a focal plane array detector. Chemical Geology, 2020, 556, 119833. https://doi.org/10.1016/j.chemgeo.2020.119833
[47].
Takao Tsuneda, Raman K. Singh, Akihiro Iiyama, Kenji Miyatake. Theoretical investigation of the H2O2-induced degradation mechanism of hydrated nafion membrane via ether-linkage dissociation. ACS Omega, 2017, 2, 4053-4064. https://doi.org/10.1021/acsomega.7b00594
[48].
Man Yang, Yilun Zou, Lei Ding, Yang Yu, Jinai Ma, Lei Li, Ande Fudja Rafryanto, Jing Zou, Arramel & Haitao Wang. TiO2 nanoparticles anchored on graphene oxide nanosheets as a highly active photocatalyst for decabromodiphenyl ether degradation. Carbon Letters, 2023, 33, 1333-1341. https://doi.org/10.1007/s42823-022-00456-1
[49].
Mahmoud Sayed, Han Li, Chuanbiao Bie. Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 41, 9, 2025. https://doi.org/10.1016/j.actphy.2025.100117.

Acknowledgement

This work was supported by Natural Science Foundation of China (Grant Nos. 22572023, 52273236, U22A2078 and 91833303) and the Jilin Province Science and Technology Development Project (Grant Nos. 20220201073GX).

RIGHTS & PERMISSIONS

© 2025 INTERNATIONAL SCIENCE ACCELERATOR PTY LTD. This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF(1683 KB)

Accesses

Citation

Detail

Sections
Recommended

/