Figure/Table detail

Recent advances and applications of on-chip micro-/nanodevices for energy conversion and storage
Haiyan Xiang, Jan E. Lopez, Travis Hu, Jiayuan Cheng, Jizhou Jiang, Huimin Li, Tang Liu, Song Liu
Composite Functional Materials, 2025, 1(1): 20250102.   DOI: 10.63823/20250102

Strategies Types Materials Performances Electrolyte Ref.
Identification of active sites Basal and edge 2H and 1T'-MoS2 monolayers (2H)basalη10=−425±27 mV
Edge η10=−201±42 mV
(1T')basalη10=−356±41 mV
Edge η10= −77 ± 24 mV
0.5 M
H2SO4
[64]
2H-MoS2 basal plane with the vacancy η10 ≤ −150 mV 0.5 M
H2SO4
[80]
helical WS2 η=−560 mV (vs Ag/AgCl) (20 nA μm−2) 0.5 M
H2SO4
[104]
WTe2 η(100)= −320 mV 0.5 M
H2SO4
[105]
phase and layer 1T'-MoS2
2H/1T′-MoS2
η= −65 mV
η= 200 mV
0.5 M
H2SO4
[82]
Heterophase boundaries between the 2H and 1T’ phases in MoTe2 η= -210 mV 0.5 M
H2SO4
[107]
PtSe2 Monolayer η=60 mV
Thick η=550 mV
0.5 M
H2SO4
[106]
Catalytic window 2H-MoS2 η=−290 mV 0.5 M
H2SO4
[108]
Monitoring the performance at a single material. GBs and S vacancies MoS2 nanograin
film
η10=−25 mV 0.5 M
H2SO4
[112]
Doping P-MoS2 η10=−297 mV 0.5 M
H2SO4
[113]
V-MoS2 η10=−185 mV 0.5 M
H2SO4
[116]
Design single atom Mo-MoS2 η10=−107 mV 0.5 M
H2SO4
[145]
Amorphous PtSex η=−100 mV 0.5 M
H2SO4
[115]
Construct Heterostructure MoS2/graphene η10=−110 mV 0.5 M
H2SO4
[105]
Methylene blue (MB)/MoS2 interfaces η10=−206 mV 0.5
mM MB
[118]
Electric Field Modulation MoOx/MoS2 core-shell nanowires η=−200 mV 0.5 M
H2SO4
[119]
MoS2 at the gate voltage of 5 V η10=−38 mV 0.5 M
H2SO4
[120]
VSe2 η10=−126 mV 0.5 M
H2SO4
[81]
WSe2 with back-gate voltage 20 V η10=−280 mV 0.5 M
H2SO4
[124]
(CoPc)/MoS2 with back-gate voltage 2V η10=−238 mV 0.5 M
H2SO4
[130]
Pt SAs on n-type MoS2 with Vg +40 V η10=−20 mV 0.5 M
H2SO4
[130]
Thermal Modulation inert MoS2 ML basal plane at 60 °C η10=−90mV 0.5 M
H2SO4
[131]
Table 1 Summary of on-chip HER electrocatalytic devices.
Other figure/table from this article